薄膜电阻

更新时间:2022-08-26 10:05

薄膜电阻器是用类蒸发的方法将一定电阻率材料蒸镀于绝缘材料表面制成,一般这类电阻常用的绝缘材料是陶瓷基板

电阻介绍

近年来,随着电子信息技术的快速发展,A/DD/A 转换电路及其它线性或非线性电路的发展日新月异,其中以薄膜电阻网络为核心的高精度运算放大器和高精度的 A/D、D/A 转换电路是必不可少的。为了提高ADC和 DAC 的精度和分辨率,薄膜电阻的性能也必须有相应的提高。

DAC 和ADC 精度和分辨率的高低主要取决于器件内部的电阻网络,DAC 和ADC 转换器件一般多选用R-2R 梯形电阻网络。电阻网络性能的分析研究和制作,一直是模拟器件研制和生产的关键技术。高精密薄膜电阻由于具有高电阻率、低电阻温度系数、高稳定性、无寄生效应和低噪音等优良特性,在航空、国防以及电子计算机、通讯仪器、电子交换机等高新领域有了越来越广泛的应用。

薄膜材料

理论基础

薄膜的形成实质上是气-固转化、晶体生成的过程,它大致可以分为下面几个主要步骤:原子或分子撞击到固体的表面;它们被固体表面的原子所吸附或直接反射回空间;被吸附的粒子在固体表面发生迁移或扩散而移动到表面上合适的格点位置并进入晶格。这些过程以及它们之间的相互关系决定了薄膜的形成过程和薄膜的性质。

组织结构

一般来讲,电阻薄膜中最多含有三类相位成分:绝缘相、半导体相和导电相。在现代的电阻薄膜中,这些相常呈微细分布,有的甚至是成分子线度分布的,这是因为粗分散结构会使薄膜性能不佳。

按照导电相或半导体相在电阻薄膜中的微细分布来说,这类薄膜的结构可能有三种:岛状结构、网状结构和连续结构。所谓岛状结构,是指导电微粒成孤岛状细分散于薄膜内,因而各微粒均被绝缘相所包围。网状结构是导电微粒已经互相连接成导电网络,在网络孔眼内是绝缘相。连续结构是导电微粒已经紧密堆积成连续薄膜,其中已很少含有绝缘相。在岛状结构中,小岛线度和岛间距离都是随机分布的,随着薄膜厚度的增加,小岛线度变大,岛间距离变小。具有岛状结构的电阻薄膜有很薄(厚度小于20nm)的金属薄膜和绝缘相很多(体积分数大于50%)的金属陶瓷薄膜。对于后一类薄膜,随着绝缘相所占比例的增多,导电小岛变小,岛间距离增大。在网状结构中,导电微粒相互连接成复杂的三维导电网络。网络的导电链密度及粗细都随着导电相所占比例的上升而增加。在连续结构中,虽然导电粒子紧密堆积,但是难免含有微量气隙(绝缘相)。薄膜的质量密度小于相应的块状材料就是含有气隙的例证之一。除了气隙以外,在薄膜的某些微区还可能含有固体绝缘相。因此薄膜的实际导电厚度常小于它的几何厚度。

综上所述,实际制备的电阻薄膜通常是含有导电相、半导体相和绝缘相的混合物薄膜。此外,各相也不一定是单一的物质。

另外,连续结构的电阻薄膜还常是各层成分不完全相同的多层复合薄膜,这是由于在制膜过程中及以后的热处理中,周围气氛中有关气体浓度的变化、基片-薄膜界面处的物理扩散和化学反应、薄膜表面层中的扩散和反应,还有特意安排的制造多层复合薄膜的工艺。现在常见的层状复合电阻薄膜多为三层结构,底层(界面层)为使薄膜与基片匹配,并强化其附着,中层是电阻薄膜主体层,上层(表面层)为防潮、耐热等保护层。除了这些目的以外,有时还为了调整或改善薄膜的电性能,也采用层状结构。例如,为了降低电阻率温度系数的绝对值,可使电阻薄膜的下层电阻率 ρ大,TCR 为负值,而使上层的电阻率ρ 小,TCR 为正值。需要指出,在电阻薄膜的各层之间常常是没有突变的界面,而是渐变的界面。层状结构的薄膜是在制膜过程及其后工序的热处理中,由控制工艺而形成的,而不是各层单独制造的。在薄膜的组织结构中,还有导电晶粒是否择优取向的问题。若是导电晶粒在电阻率上是各向异性的,显然晶粒择优取向的薄膜在长期稳定性上优于晶粒无取向的薄膜。

热处理

电阻薄膜的热处理的目的是在薄膜中形成一定数量的绝缘相从而改善薄膜的温度性能,提高薄膜的长期稳定性。电阻薄膜的制造往往是高温短时过程,因此大量的非平衡缺陷和一些介稳态结构被保留下来,致使薄膜在长期工作过程中,由于这些缺陷的逐渐消失和介稳态的逐渐转变,薄膜的性能逐渐发生变化。通过热处理,可以使沉积过程中产生的一些位错自行移动到表面消失,晶界缺陷数量下降,这样,薄膜的结构得到很大的改善,薄膜由亚稳态转变为稳定状态,薄膜性能趋向稳定。另外,由于薄膜和基片常常是两种截然不同的材料,因此在其界面处不可避免地要发生相互扩散和化学反应,从而引起电阻薄膜性能的逐渐变化。类似地,在薄膜表面,也由于扩散和反应,使薄膜性能随着时间发生变化。

从上述看出,未经热处理的电阻薄膜,其性能是不够稳定的,所以必须选择合适的热处理工艺条件,如温度、时间和气氛。一般来说,要选用高温,因为只有在高温下,才能在有限的热处理时间内,完成薄膜中的多个过程。同时要在薄膜表面形成密实的保护层,除了选用合适的热处理温度和时间以外,还要选用必要的热处理气氛。例如,用氧化性或者氮化性气氛。这样形成的绝缘相可以达到极其细微的分散结构,如分子线度的微细分散,从而使得薄膜的稳定性和温度性能达到最佳。

电材料分类

目前,制作电阻薄膜的材料有许多,包括纯金属、金属合金、金属化合物或金属陶瓷(陶瓷和金属的组合)等,但单片模拟集成电路和薄膜混合电路中广泛使用的材料有三种:镍铬、铬硅和铬硅氧化物金属陶瓷,其中镍铬属于低阻类材料,而铬硅和铬氧化硅属于高阻类材料。按照组成材料的不同,常用薄膜类电阻材料分为三种,镍铬、铬硅和铬一氧化硅

区别

薄膜电阻器与厚膜电阻器主要有以下两个区别:

一、膜厚的区别,厚膜电阻的膜厚一般大于10μm,薄膜的膜厚小于10μm,大多处于小于1μm;

二、制造工艺的区别,厚膜电阻一般采用丝网印刷工艺,薄膜电阻采用的是真空蒸发磁控溅射等工艺方法。厚膜电阻和薄膜电阻在材料和工艺上的区别直接导致了两种电阻在性能上的差异。厚膜电阻一般精度较差,10%,5%,1%是常见精度,而薄膜电阻则可以做到0.01%万分之一精度,0.1%千分之一精度等。 同时厚膜电阻温度系数上很难控制,一般较大,同样的,薄膜电阻则可以做到非常低的温度系数,这样电阻阻值随温度变化非常小,阻值稳定可靠。所以薄膜电阻常用于各类仪器仪表,医疗器械,电源,电力设备,电子数码产品等。

相关电阻器

碳膜电阻器

将结晶碳沉积在陶瓷棒骨架上制成。碳膜电阻器成本低。性能稳定。阻值范围宽。温度系数和电压系数低,是目前应用最广泛的电阻器。

金属膜电阻器

用真空蒸发的方法将合金材料蒸镀于陶瓷棒骨架表面。金属膜电阻碳膜电阻的精度高,稳定性好,噪声,温度系数校在仪器仪表及通讯设备中大量采用。

金属氧化膜

绝缘棒上沉积一层金属氧化物。由于其本身即是氧化物,所以高温下稳定,耐热冲击,负载能力强。

合成膜电阻

将导电合成物悬浮液涂敷在基体上而得,因此也叫漆膜电阻。由于其导电层呈现颗粒状结构,所以其噪声大,精度低,主要用他制造高压,高阻,小型电阻器。

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}