更新时间:2023-02-10 15:05
【词语】:词频
字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。TF-IDF加权的各种形式常被搜索引擎应用,作为文件与用户查询之间相关程度的度量或评级。
在一份给定的文件里,词频(term frequency,TF)指的是某一个给定的词语在该文件中出现的次数。这个数字通常会被正规化,以防止它偏向长的文件。(同一个词语在长文件里可能会比短文件有更高的词频,而不管该词语重要与否。)对于在某一特定文件里的词语 ti 来说,它的重要性可表示为:
以上式子中 ni,j 是该词在文件dj中的出现次数,而分母则是在文件dj中所有字词的出现次数之和。
逆向文件频率(inverse document frequency,IDF)是一个词语普遍重要性的度量。某一特定词语的IDF,可以由总文件数目除以包含该词语之文件的数目,再将得到的商取对数得到
有很多不同的数学公式可以用来计算TF-IDF。这边的例子以上述的数学公式来计算。词频 (TF) 是一词语出现的次数除以该文件的总词语数。假如一篇文件的总词语数是100个,而词语“母牛”出现了3次,那么“母牛”一词在该文件中的词频就是 0.03 (3/100)。一个计算文件频率 (DF) 的方法是测定有多少份文件出现过“母牛”一词,然后除以文件集里包含的文件总数。所以,如果“母牛”一词在1,000份文件出现过,而文件总数是10,000,000份的话,其逆向文件频率就是 9.21=( ln(10,000,000 / 1,000) )。最后的TF-IDF的分数为0.28=( 0.03 * 9.21)。
TFIDF算法是建立在这样一个假设之上的:对区别文档最有意义的词语应该是那些在文档中出现频率高,而在整个文档集合的其他文档中出现频率少的词语,所以如果特征空间坐标系取TF词频作为测度,就可以体现同类文本的特点。另外考虑到单词区别不同类别的能力,TFIDF法认为一个单词出现的文本频数越小,它区别不同类别文本的能力就越大。因此引入了逆文本频度IDF的概念,以TF和IDF的乘积作为特征空间坐标系的取值测度,并用它完成对权值TF的调整,调整权值的目的在于突出重要单词,抑制次要单词。但是在本质上IDF是一种试图抑制噪声的加权 ,并且单纯地认为文本频率小的单词就越重要,文本频率大的单词就越无用,显然这并不是完全正确的。IDF的简单结构并不能有效地反映单词的重要程度和特征词的分布情况,使其无法很好地完成对权值调整的功能,所以TFIDF法的精度并不是很高。
此外,在TFIDF算法中并没有体现出单词的位置信息,对于Web文档而言,权重的计算方法应该体现出HTML的结构特征。特征词在不同的标记符中对文章内容的反映程度不同,其权重的计算方法也应不同。因此应该对于处于网页不同位置的特征词分别赋予不同的系数,然后乘以特征词的词频,以提高文本表示的效果。