调和平均数

更新时间:2023-11-17 21:01

调和平均数(harmonic mean)又称倒数平均数,是总体各统计变量倒数的算术平均数的倒数。调和平均数是平均数的一种。但统计调和平均数,与数学调和平均数不同,它是变量倒数的算术平均数的倒数。由于它是根据变量的倒数计算的,所以又称倒数平均数。调和平均数也有简单调和平均数和加权调和平均数两种。

分类

简单调和平均数

简单调和平均数是算术平均数的变形,它的计算公式如下:

加权调和平均数

加权调和平均数是加权算术平均数的变形。它与加权算术平均数在实质上是相同的,而仅有形式上的区别,即表现为变量对称的区别、权数对称的区别和计算位置对称的区别。因而其计算公式为:

加权调和平均数的应用: 在很多情况下,由于只掌握每组某个标志的数值总和(M)而缺少总体单位数(f)的资料,不能直接采用加权算术平均数法计算平均数,则应采用加权调和平均数。

例如:某工厂购进材料三批,每批价格及采购金额资料如下表:

应用

调和平均数可以用在相同距离但速度不同时,平均速度的计算;如一段路程,前半段时速60公里,后半段时速30公里〔两段距离相等〕,则其平均速度为两者的调和平均数时速40公里。

另外,两个电阻R1, R2并联后的等效电阻R:

恰为两电阻调和平均数的一半。

区别关系

区别

算术平均数和调和平均数是平均指标的两种表现形式。算术平均数和调和平均数并非两类独立的平均数;算术平均数和调和平均数的数值之间并无直接关系,也不存在谁大谁小的问题;不能根据同一资料既计算算术平均数,又计算调和平均数,否则就是纯数字游戏,而非统计研究。

关系

算术平均数、调和平均数、几何平均数是三种不同形式的平均数,分别有各自的应用条件。进行统计研究时,适宜采用算术平均数时就不能用调和平均数或几何平均数,适宜用调和平均数时,同样也不能采用其他两种平均数。但从数量关系来考虑,如果用同一资料(变量各值不相等)。

计算以上三种平均数的结果是:算术平均数大于几何平均数,而几何平均数又大于调和平均数。当所有的变量值都相等时,则这三种平均数就相等。它们的关系可用不等式表示:H≤G≤X

公式特点

调和平均数具有以下几个主要特点:

①调和平均数易受极端值的影响,且受极小值的影响比受极大值的影响更大。

②只要有一个标志值为0,就不能计算调和平均数。

③当组距数列有开口组时,其组中值即使按相邻组距计算,假定性也很大,这时的调和平均数的代表性很不可靠。

④调和平均数应用的范围较小。在实际中,往往由于缺乏总体单位数的资料而不能直接计算算术平均数,这时需用调和平均法来求得平均数。

注意事项

(1)当变量数列有一变量X的值为零时,调和平均数公式的分母将等于无穷大,因而无法求出确定的平均值。

(2)调和平均数和算术平均数一样,易受两极端值影响。上端值越大,平均数向上偏离集中趋势就越大。反之,下端值越大,平均数向下偏离集中趋势越大。

(3)要注意区分调和平均数和算术平均数的使用条件,因事制宜。

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}