谢民育

更新时间:2024-03-06 15:07

谢民育,男,教授,博士生导师,1958年4月出生于湖南省吉首市。现任华中师范大学统计系系主任。

教育经历

1978年3月至1980年9月 湖南省吉首大学数学系

1985年9月至1987年7月 华中师范大学数学系统计硕士班

1995年5月至1998年5月 香港浸会大学数学系,数理统计博士

1999年8月至2002年7月 George Washington大学统计系,访问教授.

研究方向

1. Statistical Inference for small sample size.

2. Statistical Inference under ranked set sampling.

3. Experimental design

社会兼职

中国均匀设计学会副理事长,湖北省现场统计学会副理事长。

主持项目

国家自然科学基金,基因连锁分析中的若干统计问题(编号:10571070), 2006-2008

发表论文

[1]Chen, Wangxue, Minyu Xie, and Ming Wu(2014). Modified maximum likelihood estimator of scale parameter using moving extremes ranked set sampling.Communications in Statistics-Simulation and Computation, (just-accepted).

[2] Chen, Wangxue, Minyu Xie, and Ming Wu(2013). Parametric estimation for the scale parameter for scale distributions using moving extremes ranked set sampling.Statistics & Probability Letters, 83(9), 2060-2066.

[3]Xie, Minyu, Ming Xiong, and Ming Wu(2013). Optimal allocation for estimating the correlation coefficient of Morgenstern type bivariate exponential distribution by ranked set sampling with concomitant variable.Journal of Systems Science and Complexity, 26(2), 249-260.

[4] 谢民育,吴茗,熊明,宁建辉(2010). 指令性抽样下总体均值和方差的估计及其应用。应用数学学报,33, 297-307

[5] Min-Yu Xie, Jian-Hui Ning and Kai-Tai Fang(2007). Orthogonality and D-optimality of the U-type design under general Fourier regression models.Statistics & Probability Letters, 77(12): 1377—1384.

[6] Jianhui Ning and Minyu Xie(2007) . Minimax Invariant Estimator of Continuous Distribution Function Under Linex Loss,Journal of Systems Science and Complexity, 20(1): 1559-7067.

[7]Xie, Min-Yu.(2002). D-optimal designs based on elementary intervals for b-adic Haar wavelet regression models. InMonte Carlo and Quasi-Monte Carlo Methods2000 (pp. 523-535). Springer Berlin Heidelberg.

[8]Xie, Min-Yu, and Kai-Tai Fang.(2000). Admissibility and minimaxity of the uniform design measure in nonparametric regression model.Journal of statistical planning and inference, 83(1), 101-111.

[9]Minyu, Xie.(1994). Admissible Estimates in the Important Class of Estimates of the Covariance Matrix.Chinese Annals of Mathematics, 15(4), 435-442.

[10]Xie, M. Y. (1993). All admissible linear estimates of the mean matrix.Journal of multivariate analysis, 44(2), 220-226.

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}