边心距

更新时间:2024-04-18 17:21

正多边形的边心距是正多边形的外接圆圆心(同时也是内切圆圆心)到正多边形某一边的距离。正多边形的边心距都相等,并等于其内切圆的半径。

定义

正六边形的边长就等于其外接圆的半径,它的边心距等于边长的倍。正多边形的边心距就是其内切圆的半径。正多边形都有的外接圆,每条边的中心角,实际上就是这条边所对的弧的圆心角

性质

如果用a表示边心距,s表示边长,p表示多边形的周长,正多边形的面积可以分割成n个小三角形求和,最终结果表示为:

其内切圆的面积可以表示为:

做法和计算

已知正多边形中心的情况下,边心距可通过从正多边形中心向某一边作垂线段;或连接正多边形中心和某一边的中点求得。不知中心的情况下,可以根据垂径定理,通过两条边的垂直平分线的交点来确定正多边形的中心,然后求出边心距。

边心距可以通过正多边形外接圆的半径和边长求出,如果正n边形的外切圆的半径为R边长为s,则边心距为:

正多边形怎么求边心距?

做其中两边的垂直平分线,得其交点是圆心。将各端点同圆心连起来,这就是半径R。正N多边形就有N条半径,每两条半径之间的夹角就是360/N。边长就是2Rsin(180/N),边心距就是Rcos(180/N)。周长就是2NRsin(180/N),面积就是NRsin(180/N)Rcos(180/N)。

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}