更新时间:2024-04-18 17:21
正六边形的边长就等于其外接圆的半径,它的边心距等于边长的倍。正多边形的边心距就是其内切圆的半径。正多边形都有的外接圆,每条边的中心角,实际上就是这条边所对的弧的圆心角。
如果用a表示边心距,s表示边长,p表示多边形的周长,正多边形的面积可以分割成n个小三角形求和,最终结果表示为:
其内切圆的面积可以表示为:
正多边形怎么求边心距?
做其中两边的垂直平分线,得其交点是圆心。将各端点同圆心连起来,这就是半径R。正N多边形就有N条半径,每两条半径之间的夹角就是360/N。边长就是2Rsin(180/N),边心距就是Rcos(180/N)。周长就是2NRsin(180/N),面积就是NRsin(180/N)Rcos(180/N)。