更新时间:2024-06-19 19:01
尽管傅里叶变换及其离散形式DFT已经成为信号处理,尤其是时频分析中最常用的工具,但是,傅里叶变换存在信号的时域与频域信息不能同时局部化的问题。故Dennis Gabor于1946年引入短时傅里叶变换(Short-Time Fourier Transform)。短时傅里叶变换的基本思想是:把信号划分成许多小的时间间隔,用傅里叶变换分析每个时间间隔,以便确定该时间间隔存在的频率。
短时傅里叶变换(STFT)其窗口函数 通过函数时间轴的平移与频率限制得到,由此得到的时频分析窗口具有固定的大小。对于非平稳信号而言,需要时频窗口具有可调的性质,即要求在高频部分具有较好的时间分辨率特性,而在低频部分具有较好的频率分辨率特性。为此特引入窗口函数 ,并定义变换 。其中,a R且a≠0。该式定义了连续小波变换,a为尺度因子,表示与频率相关的伸缩,b为时间平移因子。
很显然,并非所有函数都能保证上式中表示的变换对于所有f∈L2(R)均有意义;另外,在实际应用尤其是信号处理以及图像处理的应用中,变换只是一种简化问题、处理问题的有效手段,最终目的需要回到原问题的求解,因此,还要保证连续小波变换存在逆变换。同时,作为窗口函数,为了保证时间窗口与频率窗口具有快速衰减特性,经常要求函数ψ(x)具有如下性质: ≤ , ≤ 其中,C为与x,无关的常数,ε>0。
1.1连续小波基函数
所谓小波(wavelet),即存在于一个较小区域的波。小波函数的数学定义是:设ψ(t)为一平方可积函数,即ψ(t)∈L2(R),若其傅里叶变换Ψ(ω)满足条件:
则称ψ(t)为一个基本小波或小波母函数,并称上式是小波函数的可允许条件。
根据小波函数的定义,小波函数一般在时域具有紧支集或近似紧支集,即函数的非零值定义域具有有限的范围,这即所谓“小”的特点;另一方面,根据可允许性条件可知Ψ(ω)|ω=0=0,即直流分量为零,因此小波又具有正负交替的波动性。下图为一个小波的例子。