更新时间:2023-08-07 09:31
铁电材料是指具有铁电效应的一类材料,它是热释电材料的一个分支。铁电材料及其应用研究已成为凝聚态物理、固体电子学领域最热门的研究课题之一。晶体,其原因在于他们具有相当优异的性能。许多电光晶体、压电材料就是铁电晶体。铁电晶体无论在技术上或理论上都具有重要的意义。
压电材料:物质受机械应力作用时能产生电压,或受电压作用时能产生机械应力的性质。例如:窃听器、Fabry-Perot干涉仪的推进器(陶瓷)等。
电光晶体:折射率在外电场作用下发生改变的材料。例如:Q开关等。铁电材料,是热释电材料中的一类。其特点是不仅具有自发极化,而且在一定温度范围内,自发极化偶极矩能随外施电场的方向而改变。它的极化强度P与外施电场强度E的关系曲线如图1所示,与铁磁材料的磁通密度与磁场强度的关系曲线(B-H曲线)极为相似。极化强度P滞后于电场强度E,称为电滞曲线。电滞曲线是铁电材料的特征。即当铁电晶体二端加上电场E后,极化强度P 随E 增加沿OAB曲线上升,至B点后P 随E的变化呈线性(BC线段)。E下降,P不沿原曲线下降,而是沿CBD曲线下降。当E为零时,极化强度P不等于零而为Pr,称为剩余极化强度。
只有加上反电场EC时P方等于零,EC称为铁电材料的矫顽电场强度。CBDFGHIC构成整个电滞曲线。铁电晶体是由许多小区域(电畴)所组成,每个电畴内的极化方向一致,而相邻电畴的极化方向则不同。从宏观来看,整个晶体是非极化的,呈中性。在外电场作用下,极化沿电场方向的电畴扩大。当所有电畴都沿外电场方向,整个晶体成为单畴晶体,即到达图上饱和点B,当外电场继续增加,此时晶体只有电子和离子极化,与普通电介质一样,P与E成直线关系(BC段),延长BC直线交P轴于T,相应的极化强度Ps即为该晶体的自发极化强度。
在某一温度以上,铁电材料的自发极化即消失,此温度称为居里点。它是由低温的铁电相改变为高温的非铁电相的温度。典型铁电材料有:钛酸钡(BaTiO3)、磷酸二氢钾(KH2PO4)等。过去对铁电材料的应用主要是利用它们的压电性、热释电性、电光性能以及高介电常数。由于新铁电材料薄膜工艺的发展,铁电材料在信息存储、图像显示和全息照相中的编页器、铁电光阀阵列作全息照相的存储等已开始应用。
早在远古时期, 人们就知道某些物质具有与温度有关的自发电偶极距, 因为它们被加热时具有吸引其它轻小物体的能力。1824 年Brewster观察到许多矿石具有热释电性。1880 年约·居里和皮·居里发现当对样品施加应力时出现电极化的现象。但是,早期发现的热释电体没有一个是铁电体。在未经处理的铁电单晶中,电畴的极化方向是杂乱的,晶体的净极化为零,热释电响应和压电响应也十分微小,这就是铁电体很晚才被发现的主要原因。
最早的铁电效应是在1920年由法国人Valasek在罗谢尔盐中发现的, 这一发现揭开了研究铁电材料的序幕。在1935年Busch发现了磷酸二氢钾KH2PO4———简称KDP,其相对介电常数高达30,远远高于当时的其它材料。1940年之后, 以BaTiO3为代表的具有钙钛矿结构的铁电材料陆续被发现,这是铁电历史上里程碑式的时期。
直至20世纪80年代,随着铁电唯象理论和软膜理论的逐渐完善,铁电晶体物理内涵的研究趋于稳定。20 世纪80年代中期,薄膜制备技术的突破为制备高质量的铁电薄膜扫清了障碍,并且近年来随着对器件微型化、功能集成化、可靠性等要求的不断提高,传统的铁电块体由于尺寸限制已经不能满足微电子器件的要求。铁电器件在向薄膜尺寸量级过渡的同时又与半导体工艺结合,研究者们迎来了集成铁电体的时代。
所有的铁电材料都同时具备铁电性和压电性。铁电性是指在一定温度范围内材料会产生自发极化。由于铁电体晶格中的正负电荷中心不重合,因此即使没有外加电场,也能产生电偶极矩,并且其自发极化可以在外电场作用下改变方向。当温度高于某一临界值时,其晶格结构发生改变,正负电荷中心重合,自发极化消失,这一温度临界值称为居里温度(Tc)。压电性是实现机械能-电能相互转换的一种性质。若在某一方向上给材料施加外力使材料发生形变,其内部会发生极化并在表面产生电荷,这就是压电效应;相反,若给材料施加电场则材料会发生形变而产生机械力,这就是逆压电效应。所有的铁电材料都具备上述2种特性,这是构建机电系统的材料基础之一。
其最基本的特性为在某些温度范围会具有自发极化,而且极化强度可以随外电场反向而反向,从而出现电滞回线。
铁晶体管是电介质中一类特别重要的介晶体管。电介质的特性是:他们以感应而非以传导的方式传播电的作用与影响。按照这个意义来说,不能简单的认为电介质就是绝缘体。
在电介质中起主要作用的是束缚着的电荷,在电的作用下,他们以正、负电荷重心不重合的电极化方式传递和记录电的影响。而铁晶体管是——即使没有外加电场,也可以显现出电偶极距的特性。因其每单位晶胞带有电偶极矩,且其极化率与温度有关。
极化强度P和外电场E间的关系构成电滞回线。一般而言,晶体的压电性质与自发极化性质都是由晶体的对称性决定的,可是对于铁晶体管,外电场能使自发极化反向的特征却不能由晶体的结构来预测,只能透过电滞回线的测定(或介电系数的测定)来判断。
电滞回线表示铁晶体管中存在domain。铁晶体管通常是由许多称为domain的区域所组成,而在每一个domain里面有相同的极化方向,而与邻近的domain其极化方向不同。如果是多晶体,由于晶粒本身的取向是任意的,不同domain中极化强度的相对取向可以是没有规律的。但若是单晶体,不同domain中极化强度取向之间存在着简单的关系。为明确起见,这里只考虑单晶体的电滞回线,并且设极化强度的取向只有两种可能,亦即沿某轴的正向或负向。
假设在没有外电场的存在下,晶体的总电矩为零,及晶体的两类domain中极化强度方向互为相反平行。当外电场施加于晶体时,极化强度沿电场方向的domain变大,而与其反平行方向的domain则变小。这样,极化强度P随外电场E增大而增大,如图中OA段曲线所示。电场强度的继续增大,最后使晶体只具有单个的domain,晶体的极化强度达到饱和,这相当于图中C附近的部分,将这线性部分推延至外场为零的情形,在纵轴P上所得的截距称为饱和极化强度(即E点)。实际上,这也是每个domain原来已经存在的极化强度。
因此饱和极化强度是对每个domain而言的。如电场自图中C处开始降低,晶体的极大P值亦随之减小,但在零电场时,仍存在剩余极化强度(即D点)。必须注意,剩余极化强度是对整个晶体而言的。当点场反向达到矫顽电场强度时(即F点),剩余极化全部消失,反向电场的值继续增大时,极化强度反向。如果矫顽电场强度大于晶体的击穿场强,那么在极化反向之前晶体已被电击穿,便不能说该晶体具有铁电性。
当温度高于某一临界温度时,晶体的铁电性消失,并且晶格亦发生转变,这一温度是铁电体的居里点。由于铁电性的出现或消失,总伴随着晶格结构的改变,所以这是个相变过程。当晶体从非铁电相(称顺电相)向铁电相过渡时,晶体的许多物理性质皆呈反常现象。
对于一阶相变常伴随有潜热的发生,对于二阶相变则出现比热的突变。铁电相中自发极化强度是和晶体的自发电致形变相关,所以铁电相的晶格结构的对称性要比非铁电相(顺电相)的低。如果晶体具有两个或多个铁电相时,表征顺电相与铁电相之间的一个相变温度,统称为过渡温度或转变温度。(在此附近时,介电系数常有迅速陡降的现象)。
由于极化的非线性,铁电体的介电系数不是常数,而是依赖于外加电场的,一边,以电滞回线中OA曲线在原点的斜率来代表介电系数,即在测量介电系数ε时,所加的外电场很小。铁电体在过渡温度附近,介电系数ε具有很大的值,数量级达到 ~ ,当温度高于居里点时,介电系数随温度变化的关系遵守居里-外斯定律:
式中 称为特性温度,他一般略低于居里点,C称为居里常数,而 代表电子极化对介电系数的贡献,在过渡温度时, 可以忽略。
发现具有铁电性的晶体很多,但概括起来可以分为两大类:a.一类以磷酸二氢钾 KH2PO4 --简称KDP--为代表,具有氢键,他们从顺电相过渡到铁电相是无序到有序的相变。以KDP为代表的氢键型铁晶体管,中子绕射的数据显示,在居里温度以上,质子沿氢键的分布是成对称沿展的形状。在低于居里温度时,质子的分布较集中且不对称于邻近的离子,质子会较靠近氢键的一端。
b.另一类则以钛酸钡为代表,从顺电相到铁电相的过渡是由于其中两个子晶格发生相对位移。对于以为代表的钙钛矿型铁电体,绕射实验证明,自发极化的出现是由于正离子的子晶格与负离子的子晶格发生相对位移。
目前按产生传感、驱动功能的机制, 铁电陶瓷可分为3种
层状铁电陶瓷
研究较多,并且用于制备铁电陶瓷材料的是钙钛矿结构的锆钛酸铅。
简称PZT系列。此系列的突出优点是剩余极化较大Pr大约10~35 μC/cm2、热处理温度较低(600℃左右)。但是随着研究的深入人们发现在经过累计的极化反转之后PZT系列性能退化,主要表现在出现高的漏电流和较严重的疲劳问题另外铅的挥发对人体也有害。因此研究和开发性能优良且无铅的铁电陶瓷具有重要的现实意义。而铋系层状钙钛矿结构材料属于铁电材料类且性能较好又不含铅,因此受到人们的广泛关注。该材料通式是(Bi2O2) 2+An-1BnO3n+1)2-其中A 为+1、+2或+3价离子,B 为+ 3、+ 4 或+ 5价离子,n 为类钙钛矿层中氧八面体BO6层数,其中类钙钛矿层(An-1BnO3n+1)2-与铋氧层(Bi2O2)2+交替排列。SrBi4Ti4O15,简称SBTi,n=4 、n = 5或n = 7,陶瓷是铋系层状钙钛矿结构铁电陶瓷材料。研究发现,其剩余极化较大单晶极化强度方向沿a 或b轴时2Pr=58μC/cm2
[1]热稳定性能也比较好,居里温度为520℃。
[2]另外SBTi 陶瓷又是非铅系列材料是一种比较有前途的铁电陶瓷材料。但是由于Bi容易挥发,在材料制备和使用过程中容易成铋空位,从而形成氧空位,影响材料的抗疲劳性能和铁电性能。为了满足实际应用的需要,需要提高和改进该系列材料的铁电性能。因此,国内外研究者在改变制备途径、制备方法以及调整材料的组分等方面作了不少研究。
弛豫型铁电陶瓷
自旋玻璃(spin glass)化转变的特征极为相似。所以,弛豫型铁电体又被称为极性玻璃(polar glass),相应的弛豫铁电相变又被称为极性玻璃化转变。迄今为止,虽然人们对弛豫铁电相变进行了大量的实验测量和理论探索,但是仍然没有被普遍接受的弛豫铁电相变模型所以对弛豫铁电相变机制的研究一直是该领域研究的热点问题之一。另外,现有的一些弛豫铁电体具有优良的铁电、压电和热释电性能,因而具有广泛而重要的应用。
因此,对现有弛豫铁电体性能的优化以及新型弛豫铁电体的合成将具有重要的潜在应用价值,同时也是该领域的另一热点问题。SrTiO3是一种无污染的功能陶瓷材料,因此以SrTiO3为基础合成的新材料有产业的优势。研究发现在SrTiO3中引入Bi离子产生了典型的铁电弛豫行为,并对其进行了介电谱测量,但是最低测量频率为100Hz。而一般认为,玻璃化转变的特征时间50~102s,所以在更低的频率范围内对极性玻璃体的介电谱测量,无疑对理解其玻璃化转变机制是有价值的。
反铁电陶瓷
上世纪80年代后期具有大电致应变和大机电转换能力的PZST 反铁电陶瓷作为换能器或大位移致动器有源材料方面的研究工作逐步出现。美国Pennsylvania 大学材料研究所开展了PZST反铁电陶瓷作为大位移致动器有源材料应用的可行性研究工作,针对“方宽”型电滞回线的PZST 反铁电陶瓷进行了一系列改性优化,降低相变场强,增大纵向应变量,最大纵向应变量达到0.85%,相变场强为48 kV/cm,电滞宽度为20 kV/cm。指出“方宽”型电滞回线的反铁电陶瓷在交变电场下表现出严重的电滞损耗,因而不适于交变状态下应用。
热敏元件 电光效应:光开关\u5149波导\u5149显示器件 声光效应
一般认为,铁电体的研究始于1920年,当年法国人发现了罗息盐酒石酸钾钠,场·的特异的介电性能,导致了“铁电性”概念的出现。迄今铁电研究可大体分为四个阶段’。第一阶段是1920-1939年,在这一阶段中发现了两种铁电结构,即罗息盐和系列。第二阶段是1940-1958年,铁电维象理论开始建立,并趋于成熟。第三阶段是1959—1970年,这是铁电软模理论出现和基本完善的时期,称为软模阶段。第四阶段是80年代至今,主要研究各种非均匀系统。到目前为止,己发现的铁电晶体包括多晶体有一千多种。
从物理学的角度来看,对铁电研究起了最重要作用的有三种理论,即德文希尔(Devonshire)等的热力学理论,Slater的模型理论,Cochran和Anderson的软模理论。铁电体的研究取得不少新的进展,其中最重要的有以下几个方面。
1、第一性原理的计算。现代能带结构方法和高速计算机的反展使得对铁电性起因的研究变为可能。通过第一性原理的计算,对铁畴和等铁电体,得出了电子密度分布,软模位移和自发极化等重要结果,对阐明铁电性的微观机制有重要作用。
2、尺寸效应的研究。随着铁电薄膜和铁电超微粉的发展,铁电尺寸效应成为一个迫切需要研究的实际问题。人们从理论上预言了自发极化、相变温度和介电极化率等随尺寸变化的规律,并计算了典型铁电体的铁电临界尺寸。这些结果不但对集成铁电器件和精细复合材料的设计有指导作用,而且是铁电理论在有限尺寸条件下的发展。
3、铁电液晶和铁电聚合物的基础和应用研究。1975年MEYER发现,由手性分子组成的倾斜的层状相‘相液晶具有铁电性。在性能方面,铁电液晶在电光显示和非线性光学方面很有吸引力。电光显示基于极化反转,其响应速度比普通丝状液晶快几个数量级。非线性光学方面,其二次谐波发生效率已不低于常用的无机非线性光学晶体。
聚合物的铁电性在年代末期得到确证。虽然的热电性和压电性早已被发现,但直到年代末才得到论证,并且人们发现了一些新的铁电聚合物。聚合物组分繁多,结构多样化,预期从中可发掘出更多的铁电体,从而扩展铁电体物理学的研究领域,并开发新的应用。
4、集成铁电体的研究。铁电薄膜与半导体的集成称为集成铁电体,广泛开展了此类材料的研究。铁电存贮器的基本形式是铁电随机存取存贮器。早期以为主要研究对象,直至年实现了的商业化。与五六十年代相比,当前的材料和技术解决了几个重要问题。一是采用薄膜,极化反转电压易于降低,可以和标准的硅或电路集成;二是在提高电滞回线矩形度的同时,在电路设计上采取措施,防止误写误读;三是疲劳特性大有改善,已制出多次反转仍不显示任何疲劳的铁电薄膜。
在存贮器上的重大应用己逐渐在铁电薄膜上实现。与此同时,铁电薄膜的应用也不局限于存储领域,还有铁电场效应晶体管、铁电动态随机存取存贮器等。除存贮器外,集成铁电体还可用于红外探测与成像器件,超声与声表面波器件以及光电子器件等。可以看出,集成薄膜器件的应用前景不可估量。
在铁电物理学内,当前的研究方向主要有两个一是铁电体的低维特性,二是铁电体的调制结构。铁电体低维特性的研究是应对薄膜铁电元件的要求,只有在薄膜等低维系统中,尺寸效应才变得不可忽略脚一。极化在表面处的不均匀分布将产生退极化场,对整个系统的极化状态产生影响。表面区域内偶极相互作用与体内不同,将导致居里温度随膜厚而变化。薄膜中还不可避免地有界面效应,薄膜厚度变化时,矫顽场、电容率和自发极化都随之变化,需要探明其变化规律并加以解释。
铁电超微粉的研究也逐渐升温。在这种三维尺寸都有限的系统中,块体材料的导致铁电相变的布里渊区中心振模可能无法维持,也许全部声子色散关系都要改变。库仑作用将随尺寸减小而减弱,当它不能平衡短程力的作用时,铁电有序将不能建立。
高性能的铁电材料是一类具有广泛应用前景的功能材料,从目前的研究现状来看,对于具有高性能的铁电材料的研究和开发应用仍然处于发展阶段。研究者们选用不同的铁电材料进行研究,并不断探索制备工艺,只是到目前为止对于铁电材料的一些性能的研究还没有达到令人满意的地步。比如,用于制备铁电复合材料的陶瓷粉体和聚合物的种类还很单一,对其复合界面的理论研究也刚刚开始,铁电记忆器件抗疲劳特性的研究还有待发展。总之,铁电材料是一类具有广阔发展前景的重要功能材料,对于其特性的研究与应用还需要我们不断的研究与探索,并给予足够的重视.