锰黄铜

更新时间:2022-08-25 14:26

锰黄铜具有优异的力学性能、铸造性能、切削性能以及成本低廉,成为螺旋桨的主要制造材料之一。锰黄铜除了用于制造螺旋桨外,还可用于制造汽车同步器齿环、轴承套、齿轮、冷凝器、闸门阀等。

简介

锰黄铜具有优异的力学性能、铸造性能、切削性能以及成本低廉,成为螺旋桨的主要制造材料之一。锰黄铜除了用于制造螺旋桨外,还可用于制造汽车同步器齿环、轴承套、齿轮、冷凝器、闸门阀等。但是在污染海水中,锰黄铜会发生脱Zn 腐蚀,而且耐空泡腐蚀的性能也较差,导致锰黄铜螺旋桨易发生腐蚀疲劳断裂。而铜-锆二元相图表明,锆加入锰黄铜中会先析出Cu5Zr 或Cu3Zr 强化相,作为后续的形核质点,起到细晶强化的作用。研制了一种新型锆微合金化锰黄铜,测试分析了其硬度、微观组织、均匀腐蚀性能、电化学腐蚀性能、摩擦性能以及力学性能的变化。

金相组织和硬度

通过锰黄铜的金相组织可以看出,亮白色的不规则条状或块状是以为主的固溶体组织α 相;α 相以外的暗灰色区是以电子化合物CuZn 为基的固溶体β 相;黑色(C 区)的小点是硬质点κ 相(富铁相等),主要分布在β 相中,也有少部分存在于α 相中。锆微合金化后,锰黄铜的晶粒更加细小、数量更多,分布也更加弥散。EDS 成分分析显示,A 区成分为60.56Cu、35.51Zn、2.52Al、1.42Mn;B 区成分为56.84Cu、40.12Zn、1.15Al、1.89Mn;C 区成分为75.56Fe、8.26Si、6.96Al、3.06Mn、3.00Cu、2.05Zn、1.11Ni。锆微合金化锰黄铜的硬度为175.3 HV0.2,而未微合金化锰黄铜的硬度为158.4 HV0.2,前者比后者硬度提高了9.6%。

均匀腐蚀性能

通过合金均匀腐蚀的质量损失、表面积以及腐蚀速率可以看出,锆微合金化和未合金化的锰黄铜都处在腐蚀四级标准中的优良级中,并且前者的腐蚀速率比后者降低了4.9%。

通过锰黄铜在3.5%NaCl 溶液中经均匀腐蚀后的表面SEM 形貌可以看出,锆微合金化和未合金化的锰黄铜均发生了腐蚀,并有一些凹坑。不同的是,未合金化的锰黄铜表面出现明显凸出表面的块状组织以及相对较多、较大的凹坑。

说明α 固溶体腐蚀程度较轻,腐蚀主要发生在β 相和κ 相中。锆微合金化的锰黄铜表面块状组织以及凹坑均很少。说明锆微合金化的铸态锰黄铜在3.5% NaCl 溶液中的耐蚀性能更好。

电化学腐蚀性能

通过未合金化和锆微合金化锰黄铜在室温3.5%NaCl 溶液中的动电位极化曲线。以及自腐蚀电位、腐蚀电流密度和腐蚀速率数值。可以看出,二者都发生了钝化,但是锆微合金化锰黄铜的钝化电流密度更大。可以看出,锆微合金化锰黄铜的自腐蚀电位比未微合金化的高,说明前者的腐蚀倾向更低。可能是由于锰黄铜中的κ 相(富铁相)发生了剥落,留下了自腐蚀电位较正的α 相即富铜相,在锆微合金化锰黄铜中的α相更细,数量更多,从而使自腐蚀电位发生了正移。

采用传统Tafel 拟合计算得出腐蚀速率。与未微合金化的锰黄铜相比,锆微合金化的锰黄铜腐蚀速率降低了74.5%,说明其电化学耐蚀性更好。

摩擦磨损性能

通过锰黄铜在室温下的湿摩擦系数随磨损时间变化曲线可以看出,未合金化和锆微合金化的湿摩擦系数变动幅度均较小,都有较优的耐磨性能。但是锆微合金化的锰黄铜具有更低的平均摩擦系数(0.0254),与未合金化的锰黄铜(0.0315)相比降低了19.3%。

通过锰黄铜的磨痕形貌可以看出,摩擦后的表面特征有如下几点:

①沿滑动方向上存在着明显的犁沟,犁沟深且多;

②犁沟旁边均出现了部分承载面。说明该区域在摩擦力的作用下发生了塑性变形,但没有发现裂纹,表明无脆性断裂现象。

力学性能

通过铸态锰黄铜的拉伸性能可以看出,微量元素锆的加入,使锰黄铜的抗拉强度提高5.5%,屈服强度提高了24.2%,但是伸长率降低了6.5%。这是由于锆在锰黄铜中起到细晶强化的作用,而位错增强导致了合金塑性降低,伸长率也会相应的减小。

通过锰黄铜的断口形貌可以看出,未合金化的锰黄铜断口韧窝尺寸相对较大。添加了微量元素锆后断口组织比较细小,且韧窝尺寸及分布都比较均匀,显示出明显的韧性断裂特征。但是微合金化锰黄铜断口中还有明显粗大κ 相的断裂痕迹,这也是微孔长大聚合速度加快,合金强度提高不大、伸长率下降的主要原因。

锆微锰黄铜性能

与未微合金化锰黄铜相比,锆微合金化锰黄铜具有更好的耐腐蚀性能、摩擦性能和力学性能。其机理讨论如下。

(1) 锆在铜中的固溶度极小,可形成ZrCu5或ZrCu 强化相,大量强化相可成为后续形核的质心,阻碍再结晶和晶粒长大,起到细化晶粒的作用。众多弥散分布的κ 相以及细化的α 相综合提高了合金的硬度。

(2) 锆元素加入铜中,一方面提高了合金的自腐蚀电位,降低了合金的耐蚀倾向。另一方面,细化了晶粒组织,使晶界增多,降低了腐蚀扩张的速率,阻碍了腐蚀贯通通道的形成。

(3) 锰黄铜内众多弥散分布的软基体相和硬质点易于驻留液态介质,起到一定的减磨作用。硬度的提高在一定程度上也会提高合金的摩擦性能。

(4) 锆微合金化锰黄铜力学性能提高有以下两点原因:

①锆的加入细化了合金组织,具有较大的弥散强化作用;

②晶粒细化、晶界增多,并且合金在凝固过程中产生了大量的位错,从而产生很大的形变强化效果。

总结

与未微合金化锰黄铜相比,锆微合金化锰黄铜的组织更细,硬度更高,其均匀腐蚀速率降低了4.9%,电化学腐蚀速率降低了74.5%,摩擦系数降低了19.3%,抗拉强度和屈服强度分别提高了5.5%和24.2%。

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}