陈兵龙

更新时间:2023-12-25 17:19

陈兵龙,男,1974年生于山西汾西。1992-2000年,就读于广州中山大学数学系,获博士学位。2000年于中山大学数学系任讲师,2004年晋升为教授。 2010年获国家杰出青年科学基金。2016年获中组部“万人计划”领军人才。

人物经历

学习经历

1992.9-1996.7,广州中山大学数学系本科应用数学专业 获学士学位;

1996.9--2000.7,广州中山大学数学系基础数学专业获博士学位。

工作经历

2000-2004 广州中山大学数学系讲师

2004-今广州中山大学数学系教授

学术成果

1.解决了Ricci flow 解的唯一性问题。

2.四维流形上Ricci flow with surgery 的研究,完成了Hamilton 关于具有正迷向曲率且不带本性不可压空间形式的四维流形的分类。

3.解决了Hamilton 关于Ricci flow的第三类奇点是soliton 的猜测。Bonnet–Myers 型定理。

4.完全解决了具有非负解析双截曲率的凯勒流形上的全纯函数空间维数估计的丘成桐猜测。

5.单值化问题,以及非负解析双截曲率的凯勒流形的几何的研究。

6.三维流形上Ricci flow with surgery 的研究。

这些学术论文发表在国际权威的数学杂志 Journal of Differential Geometry, Invent.Math., Math.Ann.,等上。承担一项国家自然科学基金(10401042):Ricci flow 理论及其应用研究(主持)(2005-2007),一项教育部的优秀博士论文作者专项基金(200216):复微分几何中单值化定理研究(主持)(2003-2007)。

18. Compact Kähler manifolds homotopic to negatively curved Riemannian manifolds, Math. Ann., 370(2018): 1477–1489, with Xiaokui Yang.

Abstract: In this paper, we show that any compact Kähler manifold homotopic to a compact Riemannian manifold with negative sectional curvature admits a Kähler– Einstein metric of general type. Moreover, we prove that, on a compact symplectic manifold X homotopic to a compact Riemannian manifold with negative sectional curvature, for any almost complex structure J compatible with the symplectic form, there is no non-constant J -holomorphic entire curve f : C → X .

17. Euler characteristic numbers of spacelike manifolds, Asian J. Math. Vol. 21, No. 3(2017), pp. 591-598. with Kun Zhang.

Abstract. In this note, we prove that if a compact even dimensional manifold Mn with negative sectional curvature is homotopic to some compact space-like manifold Nn, then the signed Euler characteristic number of M is positive. We also show that the minimal volume conjecture of Gromov is true for all compact even dimensional space-like manifolds.

16. Path-connectedness of the moduli spaces of metrics with positive isotropic curvature on four- manifolds. Math. Ann. 366 (2016), no. 1-2, 819-851, with Xian-Tao Huang.

Abstract. We prove the path connectedness of the moduli spaces of metrics with positive isotropic curvature on certain compact four-dimensional manifolds.

15. Isometric embedding of negatively curved complete surfaces in Lorentz-Minkowski spaces, Pacif Jour. Math., vol. 276, no. 2, (2015), 347-367, with Le Yin.

14. A conformally invariant classification theorem in four dimensions, Comm. Anal. Geom. 22 (2014), no. 5, 811-831, with Xi-Ping Zhu.

14. Self-pairings on supersingular elliptic curves with embedding degree three, Finite Fields Appl. 28 (2014), 79-93, with Zhao Chang-An.

13. Local pinching estimates in 3-dim Ricci flow, Math. Res. Lett. 20 (2013), no. 5, 845-855, with Xu Guoyi; Zhang Zhuhong.

12. Smoothing positive currents and the existence of Ka ̈hler-Einstein metrics, Sci. China Math. 55 (2012), no. 5, 893-912, Bing-Long Chen.

12. Complete classification of compact four-manifolds with positive isotropic curvature, J. Diff. Geom, volume 91 (2012), 41-80, with S.-H. Tang, X.-P. Zhu.

09. Local foliations and optimal regularity of Einstein spacetimes, J. Geom. Phys. 59 (2009), no. 7, 913-941, with Philippe G. LeFloch.

09. Strong uniqueness of the Ricci flow, J. Diff. Geom. 82 (2009), no. 2, 363-382, Bing-Long Chen.

08. Injectivity radius of Lorentzian manifolds, Comm. Math. Phys. 278 (2008), no. 3, 679-713, with Philippe G. LeFloch.

07. Uniqueness and pseudolocality theorems of mean curvature flow, Comm. Anal. Geom, 15(3),25-80, (2007), with Le Yin.

06. Ricci Flow with Surgery on Four-manifolds with Positive Isotropic Curvature, J. Diff. Geom., 74 (2006), 177-264, with Xi-Ping Zhu.

06. Uniqueness of the Ricci Flow on Complete Noncompact Manifolds, J. Diff. Geom., 74 (2006), 119-154, with Xi-Ping Zhu.

06. Sharp dimension estimates of holomorphic functions and rigidity, Trans. Amer. Math. Soc. 358(2006), no. 4, 1435-1454, with Xiao-Yong Fu, Le Yin, Xi-Ping Zhu.

04. A uniformization theorem of complete noncompact Kahler surfaces with positive bisectional curvature, J. Diff. Geom., 67, 519-570 (2004), with Siu-Hung Tang, Xi-Ping Zhu.

03. On complete noncompact Kahler manifolds with positive bisectional curvature, Math. Ann., 327, 1–23, (2003), with Xi-Ping Zhu.

03. Ricci flow on compact Kahler manifolds of positive bisectional curvature, C. R. Acad. Sci. Paris. Ser., I 337(2003), 781–784, with Huai-Dong Cao, Xi-Ping Zhu.

02. A gap theorem for complete noncompact manifolds with nonnegative curvature, Comm. Anal. Geom. 10(2002),217-239, with Xi-Ping Zhu.

00. Complete Riemannian manifolds with pointwise pinched curvature, Invent. Math., 140 (2000), 423–452, with Xi-Ping Zhu.

获奖记录

2002年,获全国百篇优秀博士学位论文奖。

2010年,获国家“杰出青年科学基金”。

2023年,获第十九届陈省身数学奖。

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}