集合论基础

更新时间:2021-06-15 16:12

《集合论基础》是2006年人民邮电出版社出版的图书,作者是恩德滕。

内容介绍

集合论是数学的一个基本分支,在数学中占据着独特的地位,其基本概念已渗透到数学的所有领域。本书从集合论中最基本的概念开始,循序渐进,深入浅出。主要内容有:公理及运算、关系与函数、自然数、实数的构造、基数与选择公理、秩序与序数、序数与序型等。本书附有大约300道习题。 本书可作为数学、计算机及其他相关专业本科生教材。

作品目录

Chapter 1 INTRODUCTION 1

Baby Set Theory 1

Sets-An Informal View 7

Classes 10

Axiomatic method 10

Notation 13

Historical Notes 14

Chatper 2 AXIOMS AND OPERATIONS 17

Axioms 17

Arbitrary Unions and Intersections 23

Algebra of Sets 27

Epilogue 33

Review Exercises 33

Chapter 3 RELATIONS AND FUNCTIONS 35

Ordered Pairs 35

Relations 39

n-Ary Relations 41

Functions 42

Infinite Cartesian Products 54

Equivalence Relations 55

Ordering Relations 62

Review Exercises 64

Chapter 4 NATURAL NUMBERS 67

Inductive Sets 67

Peano's Postulates 70

Recursion on 73

Arithmetic 79

Ordering on 83

Review Exercises 88

Chapter 5 CONSTRUCTION OF THE REAL NUMBERS 90

Integers 90

Rational Numbers 101

Real Numbers 111

Summaries 121

Two 123

Chapter 6 CARDINAL NUMBERS AND THE AXIOM OF CHIOCE 128

Equinumerosity 128

Finite Sets 133

Cardinal Arithmetic 138

Ordering Cardinal Numbers 145

Axiom of Choice 151

Countable Sets 159

Arithmetic of Infinite Cardinals 162

Continuum Hypothesis 165

Chapter 7 ORDERINGS AND ORDINALS 167

Partial Orderings 167

Well Orderings 172

Replacement Axioms 179

Epsilon-Images 182

Isomorphisms 184

Ordinal Numbers 187

Debts Paid 195

Rank 200

Chapter 8 ORDINALS AND ORDER TYPES 209

Transfinite Recursion Again 209

Alephs 212

Ordinal Operations 215

Isomorphism Types 220

Arithmetic of Order Types 222

Ordinal Arithmetic 227

Chapter 9 SPECIAL TOPICS 241

Well-Founded Relations 241

Natural Models 249

Cofinality 257

Appendix NOTATION, LOGIC, AND PROOFS 263

Selected References for Further Study 269

List of Axioms 271

Index 273

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}