更新时间:2022-08-25 14:09
雷雨云中电荷分布模式最先为雷雨云的电偶极子模式:雷雨云上部为中心高度 6公里、半径2公里、含正电24库的区域,下部为中心高度3公里、半径 1公里、含负电20库的区域,云底附近有一个中心高度1.5公里、半径0.5公里、含正电 4库的区域(往往称为正电荷中心)。
雷雨云中产生电荷并形成一定空间分布的过程,是大气电学的重要内容之一。
雷雨云中电荷分布模式最先为雷雨云的电偶极子模式:雷雨云上部为中心高度 6公里、半径2公里、含正电24库的区域,下部为中心高度3公里、半径 1公里、含负电20库的区域,云底附近有一个中心高度1.5公里、半径0.5公里、含正电 4库的区域(往往称为正电荷中心)。这是从雷雨云电场探空仪的数十次探测结果归纳出来的。随着探测技术的改进和观测资料的积累,对上述电偶极子模式提出不少修正,如各电荷中心的电量和所在高度均有改变。观测还发现,电偶极子的轴常会倾斜,某些雷雨云中电荷中心的分布还会反转过来,但在尚无更合理的模式之前,仍用电偶极子模式来代表雷雨云中的电荷分布。
根据观测结果,雷雨云中的电除上述电偶极子分布外,还有下列特征:①单个雷暴的降水和电活动时间为30~40分钟。②云厚至少为3~4公里才能产生强起电和闪电;发展很高的雷雨云,闪电频数要高得多;云中有冰存在的区域内能产生强起电和闪电,但无冰存在的云内偶尔也能产生强起电。③强对流活动和降水两者是产生闪电的重要条件,但降水小于3毫米/时的云也能产生闪电。④雷雨云中产生闪电的平均率为每分钟数次,要求的起电电流为1安,每次闪电放电大约产生100库·公里的电矩变化,相应的电荷输送量为数十库。⑤云中电场强度平均在(2~5)×10伏/米之间,但强起电过程能产生的云中电场强度大于 4×10伏/米,空间电荷大于2×10库/米。
(1)观测表明,一般情形下,大气携带有正电荷,地面为负电荷,大气具有方向向下的电场,当出现强对流云中有大粒子冰雹和小粒子冰晶时。在没有电场时,这两种粒子内部的正负电荷重合一起而在有大气电场时,在电场的作用下,粒子内部的正电荷沿电场方向移动,负电荷要逆着电场方向移动,形成粒子的上半部为负电荷、下半部为正电荷,一个粒子表现为正、负两个电极,即电介质的极化。
(2)在强对流云中的冰雹和冰晶粒子由于其重量差异大,轻的冰晶粒子在上升气流作用下向上运动,而重的冰雹克服上升气流向下运动。两种粒子相反方向运动,结果相遇发生碰撞接触时交换电量,无论是大粒子或小粒子的正负电荷分布均为粒子的上半部以负电荷为主、下半部为正电荷,因此在碰撞接触时交换电量时,大粒子冰雹的正电荷与小粒子上半部的负电荷合并中和,由于这两种是固体粒子,碰撞接触后就分离,这样冰雹粒子失去正电荷而带负电荷,冰晶粒子失去负电荷后带正电荷。
(3)通过重力分离机制,带正电荷的冰晶粒子轻随上升气流向云的上部运动,带负电荷的冰雹粒子因很重,在重力作用下克服上升气流向云的下部运动,从而形成云的上部为正电荷冰雹粒子,云的下部为负的电荷冰晶粒子。
主要的雷雨云起电理论有5种
云滴或冰晶由降水粒子上碰撞弹回的荷电过程 最早由J.埃尔斯特和H.盖特尔在19世纪末提出,20世纪70年代以来,又为许多研究工作者所发展。雨滴或冰雹等降水粒子在指向朝下的大气电场(如晴天电场)作用下发生极化,造成上半部带负电、下半部带正电,所以由降水粒子下半部碰撞弹回的云滴或冰晶,将带走它们下部一部分正电荷。由于降水粒子下降快,云滴和冰晶下降慢,造成重力分离,这时云的上部为云滴和冰晶(或只有一种),形成正电荷中心,云下部为降水粒子,形成负电荷中心。根据计算,发现冰晶由极化冰雹上的碰撞弹回过程或云滴由极化雨滴上的碰撞弹回过程,均可产生雷雨云中的起电。
一个极化的雨滴在有离子或带电云滴的云中降落时,如果雨滴在指向朝下的电场中降落的速度大于正离子在电场中的向下运动速度,则雨滴将会排斥正离子而俘获负离子(见大气离子),这种选择俘获过程早在20世纪20年代C.T.R.威耳孙就提出过,故称威耳孙机制。根据计算,当云中电场强度增大到一定程度后,这种选择俘获过程就不能维持。一般这一过程只能在电场强度小于10千伏/米时发生。
当一块中性冰的两端维持稳定的温差时,热端将出现剩余负电荷,冷端将出现剩余正电荷,使两端有一定的电位差,这就是冰的热电效应。这由E.J.沃克曼和S.E.雷诺在20世纪40年代最先发现。故当两块温度不同的冰瞬间接触时,温度较高的一块将得到负电荷,而温度较低的一块将得到正电荷。热电效应说明了冰在温度分布不均匀情况下的电荷分离现象,它可以解释下述两种起电过程:一种是当冰雹由过冷水滴和冰晶组成的冷云中降落时的起电过程。这时冰雹与大量过冷水滴碰撞,后者释放的冻结潜热使得冰雹比冰晶温度更高些,因而冰晶与冰雹接触弹回后,根据热电效应,冰雹将带负电而冰晶带正电。经过重力分离作用,云的上部为冰晶,下部为冰雹,所以云的正电中心在上部而负电中心在下部。另一种是结霜起电。考虑冰雹与过冷云滴的碰撞,这时云滴在冰雹表面上冻结(结霜现象),形成内层暖外壳冷的温度分布。根据热电效应,冻滴外层带正电,内层带负电。由于内层冻结时的体积膨胀,使最初已冻结的外壳胀破并抛射出一些小冰屑(或小水滴),带走正电荷,而留下的冻滴主体(冰雹)带负电。经重力分离,云的上部为小冰屑或小水滴,形成正电荷中心,下部为冰雹,形成负电荷中心。
早在19世纪末,P.莱纳德就发现当大水滴被气流吹裂时,碎裂后的大残块带正电,小碎沫带负电。由此认为雨滴在云底附近被上升气流吹碎,使得大残块在云底附近形成次正电荷中心,而小碎沫被上升气流带上去形成负电荷中心。
为B.冯内古特在50年代所提出,他认为云的对流运动反抗电场力而起输送和聚集荷电云滴和冰晶的作用。上升气流携带云底正离子向云中运动,直至上部形成正电荷区。由于高空传导电流使大量负离子来到云的上表面并附在云滴或冰晶上(见地空电流),然后由云周围强烈的下沉气流带下来。到达云下的负电荷增强了地面电场,使地面感应,产生尖端放电,从而产生更多的正离子,这种正反馈过程最终将造成雷雨云中常见的电荷分布。