更新时间:2024-01-26 04:18
香农三大定理是信息论的基础理论。香农三大定理是存在性定理,虽然并没有提供具体的编码实现方法,但为通信信息的研究指明了方向。香农第一定理是可变长无失真信源编码定理,香农第二定理是有噪信道编码定理,香农第三定理是保失真度准则下的有失真信源编码定理。
香农第一定理(可变长无失真信源编码定理)
设离散无记忆信源X包含N个符号{x1,x2,…,xi,..,xN},信源发出K重符号序列,则此信源可发出N^k个不同的符号序列消息,其中第j个符号序列消息的出现概率为PKj,其信源编码后所得的二进制代码组长度为Bj,代码组的平均长度B为
B=PK1B1+PK2B2+…+PKN^kBN^k
当K趋于无限大时,B和信息量H(X)之间的关系为B/k=H(X)(K趋近无穷)
香农第一定理的意义:将原始信源符号转化为新的码符号,使码符号尽量服从等概分布,从而每个码符号所携带的信息量达到最大,进而可以用尽量少的码符号传输信源信息。
香农第二定理(有噪信道编码定理)
有噪信道编码定理。当信道的信息传输率不超过信道容量时,采用合适的信道编码方法可以实现任意高的传输可靠性,但若信息传输率超过了信道容量,就不可能实现可靠的传输。
设某信道有r个输入符号,s个输出符号,信道容量为C,当信道的信息传输率R
公式:注:B为信道带宽;S/N为信噪比,通常用分贝(dB)表示。
香农第三定理(保失真度准则下的有失真信源编码定理)
保真度准则下的信源编码定理,或称有损信源编码定理。只要码长足够长,总可以找到一种信源编码,使编码后的信息传输率略大于率失真函数,而码的平均失真度不大于给定的允许失真度,即D'<=D.
设R(D)为一离散无记忆信源的信息率失真函数,并且选定有限的失真函数,对于任意允许平均失真度D>=0,和任意小的a>0,以及任意足够长的码长N,则一定存在一种信源编码W,其码字个数为M<=EXP{N[R(D)+a]},而编码后码的平均失真度D'(W)<=D+a。