黎曼和

更新时间:2022-09-24 10:08

这里有一块形状不规则的土地,要测量它的面积,怎么办呢?一个叫黎曼的德国数学家(Bernhard Riemann, 1826-1866),他想了个办法:将这不规则图形切成一条条的小长条儿,然后将这个长条近似的看成一个矩形,再分别测量出这些小矩形的长度,再计算出它们的面积,把所有矩型面积加起来就是这块不规则地的面积。这就是著名的“黎曼和”。小长条宽度趋于0时,即为面积微分,各个面积求和取极限即为定积分。虽然牛顿时代就给出了定积分的定义,但是定积分的现代数学定义却是用黎曼和的极限给出。

定义

对一个在闭区间有定义的实值函数,关于取样分割、的黎曼和定义为以下和式:

和式中的每一项是子区间长度与在处的函数值的乘积。直观地说,就是以标记点到X轴的距离为高,以分割的子区间为长的矩形的面积。

黎曼积分

不太严格地来说,黎曼积分就是当分割越来越“精细”的时候,黎曼和趋向的极限。下面的证明中,会对“越来越‘精细’”作出严格的定义。

要使得“越来越‘精细’”有效,需要把趋于0。如此中的函数值才会与接近,矩形面积的和与“曲线下方”的面积的差也会越来越小。实际上,这就是黎曼积分定义的大概描述。

严格定义如下:是函数在闭区间上的黎曼积分,当且仅当对于任意的,都存在,使得对于任意的取样分割、,只要它的子区间长度最大值,就有:

也就是说,对于一个函数,如果在闭区间上,无论怎样进行取样分割,只要它的子区间长度最大值足够小,函数的黎曼和都会趋向于一个确定的值,那么在闭区间上的黎曼积分存在,并且定义为黎曼和的极限,这时候称函数为黎曼可积的。

这个定义的缺陷是没有可操作性,因为要检验所有的取样分割是难以做到的。下面引进另一个定义,然后证明它们是等价的。

另一个定义: 是函数在闭区间上的黎曼积分,当且仅当对于任意的,都存在一个取样分割、,使得对于任何比其“精细”的分割 and ,都有:

这两个定义是等价的。如果有一个满足了其中一个定义,那么它也满足另一个。首先,如果有一个满足第一个定义,那么只需要在子区间长度最大值的分割中任取一个。对于比其精细的分割,子区间长度最大值显然也会小于,于是满足

其次证明满足第二个定义的也满足第一个定义。首先引进达布积分的概念,第二个定义和达布积分的定义是等价的,具体见达布积分(达布积分那一文章里并没有说明这个原因,来源请求)。其次我们证明达布积分的定义满足第一个定义。任选一个分割使得它的上达布和与下达布和都与相差不超过。令等于,其中和是在上的上确界下确界。再令是和中的较小者。可以看出,当一个分割的子区间长度最大值小于时,关于它的黎曼和与上达布和或下达布和至多相差,所以和至多相差。

由于以上原因,黎曼积分通常被定义为达布积分(即第二个定义),因为达布积分比黎曼积分更简单、更有可操作性。

黎曼积分的性质

由于一个函数的黎曼积分是一个实数,因此在固定了一个区间后,将一个黎曼可积的函数设到其黎曼积分的映射是所有黎曼可积的函数空间上的一个线性泛函

无论a、b、c之间的大小关系如何,以上关系式都成立。

黎曼积分的推广

黎曼积分可推广到值属于维空间的函数。积分是线性定义的,即如果,则。特别地,由于复数是实数向量空间,故值为复数的函数也可定义积分。

黎曼积分只定义在有界区间上,扩展到无界区间并不方便。可能最简单的扩展是通过极限来定义积分,即如同反常积分(improper integral)一样。我们可以令

不幸的是,这并不是很合适。平移不变性(如果把一个函数向左或向右平移,它的黎曼积分应该保持不变)丧失了。

我们可以尝试定义:

此时,如果尝试对上面的积分,我们得到,因为我们先使用了极限。如果使用相反的极限顺序,我们得到。

这同样也是不可接受的,我们要求积分存在且与积分顺序无关。即使这满足,依然不是我们想要的,因为黎曼积分与一致极限不再具有可交换性。例如,令在上,其它域上等于0。对所有,。但一致收敛于0,因此的积分是0。因此。即使这是正确的值,可看出对于极限与普通积分可交换的重要准则对反常积分不适用。这限制了黎曼积分的应用。

一个更好的途径是抛弃黎曼积分而采用勒贝格积分。虽然勒贝格积分是黎曼积分的扩展这点看上去并不是显而易见,但不难证明每个黎曼可积函数都是勒贝格可积的,并且当二者都有定义时积分值也是一致的。

扩展黎曼积分的另一种途径是替换黎曼累加定义中的因子,粗略地说,这给出另一种意义上长度间距的积分。这是黎曼-斯蒂尔切斯积分所采用的方法。

人物简介——黎曼

德国数学家。生于德国汉诺威(Hannover) 的布雷塞伦茨(Breselenz),是牧师之子,在哥廷根 (Gottingen) 大学和梅林大学学习,1851年在哥廷根大学获得博士学位,1854年任该大学兼职讲师,1857年任副教授,1859年作为P. G. L. Dirichlet的继承人任教授。因患肺病,英年早逝。短短一生中,在数学各个领域作出了划时代的贡献。最重要的贡献有四个方面:几何学、复变函数论、微分方程和数学分析的基本理论。他是黎曼几何的创始人,复变函数理论创始人之一。在数学分析方面,他给积分下的标准定义,一直沿用至今,以至于这种意义下的古典积分叫作“黎曼积分”。他还对傅立叶级数理论做了许多研究,其中最著名的就是以他的名字命名的定理。黎曼对偏微分方程和常微分方程理论,特别是常微分方程的奇点理论,也都创造了一些重要的方法。黎曼还十分关注自然科学,特别是物理学。他的复变函数和微分方程研究都直接与流体力学和电磁理论相联系,著名的数学家克莱因曾在《19世纪数学发展讲义》一书中指出: “黎曼用他的数学才能为自然科学本身开辟新的途径。然后又把自然科学作为形成数学中的新概念的动力”。

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}