更新时间:2022-08-25 18:03
贝尔曼-福特算法(Bellman-Ford)是由理查德·贝尔曼(Richard Bellman) 和 莱斯特·福特 创立的,求解单源最短路径问题的一种算法。有时候这种算法也被称为 Moore-Bellman-Ford 算法,因为 Edward F. Moore 也为这个算法的发展做出了贡献。它的原理是对图进行V-1次松弛操作,得到所有可能的最短路径。其优于迪科斯彻算法的方面是边的权值可以为负数、实现简单,缺点是时间复杂度过高,高达O(VE)。但算法可以进行若干种优化,提高了效率。
贝尔曼-福特算法(英语:Bellman–Ford algorithm),求解单源最短路径问题的一种算法,由理查德·贝尔曼(Richard Bellman) 和莱斯特·福特创立的。有时候这种算法也被称为 Moore-Bellman-Ford 算法,因为Edward F. Moore也为这个算法的发展做出了贡献。它的原理是对图进行 次松弛操作,得到所有可能的最短路径。其优于迪科斯彻算法的方面是边的权值可以为负数、实现简单,缺点是时间复杂度过高,高达 。但算法可以进行若干种优化,提高了效率。
贝尔曼-福特算法与迪科斯彻算法类似,都以松弛操作为基础,即估计的最短路径值渐渐地被更加准确的值替代,直至得到最优解。在两个算法中,计算时每个边之间的估计距离值都比真实值大,并且被新找到路径的最小长度替代。 然而,迪科斯彻算法以贪心法选取未被处理的具有最小权值的节点,然后对其的出边进行松弛操作;而贝尔曼-福特算法简单地对所有边进行松弛操作,共 次,其中 是图的点的数量。在重复地计算中,已计算得到正确的距离的边的数量不断增加,直到所有边都计算得到了正确的路径。这样的策略使得贝尔曼-福特算法比迪科斯彻算法适用于更多种类的输入。
贝尔曼-福特算法的最多运行 (大O符号)次, 和 分别是节点和边的数量)。
每次松弛操作实际上是对相邻节点的访问,第次松弛操作保证了所有深度为n的路径最短。由于图的最短路径最长不会经过超过条边,所以可知贝尔曼-福特算法所得为最短路径。
与迪科斯彻算法不同的是,迪科斯彻算法的基本操作“拓展”是在深度上寻路,而“松弛”操作则是在广度上寻路,这就确定了贝尔曼-福特算法可以对负边进行操作而不会影响结果。
因为负权环可以无限制的降低总花费,所以如果发现第次操作仍可降低花销,就一定存在负权环。
循环的提前跳出
在实际操作中,贝尔曼-福特算法经常会在未达到次前就出解,其实是最大值。于是可以在循环中设置判定,在某次循环不再进行松弛时,直接退出循环,进行负权环判定。
队列优化
主条目:最短路径快速算法
西南交通大学的段凡丁于1994年提出了用队列来优化的算法。松弛操作必定只会发生在最短路径前导节点松弛成功过的节点上,用一个队列记录松弛过的节点,可以避免了冗余计算。原文中提出该算法的复杂度为,是个比较小的系数,但该结论未得到广泛认可。
Pascal语言示例
C++语言示例