VVVF

更新时间:2023-12-24 16:03

VVVF,是Variable Voltage and Variable Frequency的缩写, 意为:可变电压、可变频率,也就是变频调速系统。 VVVF控制的逆变器连接电机,通过同时改变频率和电压,达到磁通恒定(可以用反电势/频率近似表征)和控制电机转速(和频率成正比)的目的,所以多应用在变频器中,属于工业自动化领域。

基本定义

正弦电流

(1) 解析

实际上,DF=cosφ就是同频率正弦电流的功率因数。在电力电子技术未进入实用阶段之前,电气设备中的电流极大多数都是正弦波。所以,人们通常把电流与电压相位差角余弦cosφ就定义为功率因数。

(2) 物理意义

当电流与电压不同向(假设电流滞后于电压,这里的方向指电压电流矢量的方向)时,在电流的方向与电压相反的区间,瞬时功率为负功率。其物理意义是:在该时间段内,是器件(电感或电容)中储存的能量(磁场能电场能)向电源反馈的过程。

因此,电流中的一部分被用于电源和器件间进行能量交换,而并未真正作功,故平均功率被“打了折扣”。

高次谐波电流

(1) 解析

在电工基础里,非正弦电流可以通过傅里叶级数分解成许多高次谐波电流。或者说,非正弦电流可以看成是许多高次谐波电流的合成。

对于分析非正弦电流的功率因数来说,了解高次谐波电流的平均功率是至关重要的。今以5次谐波电流为例,分析如下:

式(6)表明,5次谐波电流的平均功率为0。可以进一步证明:所有高次谐波电流的平均功率都等于0。或者说,高次谐波电流的功率都是无功功率。

(2) 物理意义

如5次谐波电流的瞬时功率中,一部分是正功率,另一部分是负功率。并且,正功率和负功率的总面积正好相等,故平均功率为0。

非正弦电流

(1) 基波电流与电压同相位

在基波电流与电压同相位的情况下,上述的位移因数可不必考虑。

非正弦电流的有效值由下式计算:

式中,I1、I5、I7分别是基波电流、5次谐波电流和7次谐波电流的有效值(三相对称电路中不存在以3为倍数的高次谐波电流)。

因为非正弦电流的无功功率是由于电流波形发生畸变而形成的,故其功率因数用畸变因数来表述:

式中,Kd─畸变因数。

(2) 基波电流与电压不同相

当基波电流的相位与电压之间存在相位差时,有:

·各高次谐波电流的平均功率仍为0;

·基波电流与电压之间因有相位差而产生的位移因数必须考虑。

所以,非正弦电流的功率因数的表达式为:

字串2

变频器因数

主要影响

(1) 对电动机的影响

对于电动机来说,功率因数低,将会降低电动机的效率。如功率因数低,意味着电流与电压之间的相位差较大,故在有功电流I1a相等的情况下,有:

可见,功率因数低的最终结果,是电动机的铜损增加,故效率降低。

电动机效率的降低,虽然是用户应该考虑的问题,但却并不是供电系统考虑的主要问题。

(2)对供电系统的影响

供电系统在为用户提供电源时,要受到电流大小的制约。因为电流太大了,会使导线发热严重,损坏绝缘。

如果供电线路里无功电流太多了,则有功电流必减小,影响了供电能力。对于供电系统来说,这是更为重要的问题。所以,供电系统总是通过进线处的无功电度表来考察用户的功率因数的。

变频器因数

(1)电动机侧的功率因数

对于交-直-交变频器而言,电动机侧的无功电流将被直流电路的储能器件(电容器)吸收,反映不到变频器的输入电路中。因此,电动机的功率因数并不是供电系统考察的对象。

(2)变频器输入电流的功率因数

变频器的输入侧是三相全波整流和滤波电路

5(a)所示。显然,只有当电源线电压的瞬时值uL大于电容器两端的直流电压UD时,整流桥中才有充电电流。因此,充电电流总是出现在电源电压的振幅值附近,呈不连续冲击波状态。显然,变频器的进线电流是非正弦的,具有很大的高次谐波成份。有关资料表明,输入电流中,高次谐波的含有率高达88%左右,而5次谐波和7次谐波电流的峰值可达基波分量的80%和70%。

如上述,所有高次谐波电流的功率都是无功功率。因此,变频器输入侧的功率因数是很低的。有关资料表明,甚至可低至0.7以下。

因此,变频调速系统需要考察的是输入电流的功率因数。

测量误区

(1) 输入电流的位移因素

因为变频器输入电流的基波分量总是与电源电压同相位的,所以,其位移因数等于1。

(2)功率因数表测量结果

功率因数表是根据电动式偶衡表的原理制作的,其偏转角与同频率电压和电流间的相位差有关。但对于高次谐波电流,则由于它在一个周期内所产生的电磁力将互

相抵消,对指针的偏转角不起作用。功率因数表的读数将反映不了畸变因数的问题。如果用功率因数表来测量变频器输入侧的功率因数,所得到的结果是错误的。

改善

根据以上的分析,改善变频器功率因数的基本途径是削弱输入电路内的高次谐波电流。因此,不能用补偿电容的方法。恰恰相反,较多地使用电抗器法。

电抗器法

(1) 交流电抗器

在变频器的输入侧串入三相交流电抗器AL。

串入AL后, 输入电流的波形高次谐波电流的含有率可降低为38%;功率因数PF可提高至0.8~0.85。

除此以外,AL还有以下作用:

(a) 削弱冲击电流

电源侧短暂的尖峰电压可能引起较大的冲击电流。交流电抗器将能起到缓冲作用。例如,在电源侧投入补偿电容(用于改善功率因数)的过渡过程中,可能出现较高的尖峰电压;

(b) 削弱三相电源电压不平衡的影响。

(2) 直流电抗器

直流电抗器DL接在整流桥和滤波电容器之间;

接入直流电抗器后,变频器输入电流的波形高次谐波电流的含有率可降低为33%;功率因数PF可提高至0.90以上。由于其体积较小,故不少变频器已将直流电抗器直接配置在变频器内。

直流电抗器除了提高功率因数外,还可削弱在电源刚接通瞬间的冲击电流。

如果同时配用交流电抗器和直流电抗器,则可将变频调速系统的功率因数提高至0.95以上。

(3)注意事项

电路中串入电抗器后,变频器的最高输出电压将降低2~3%。这将导致电动机运行电流的增加和起动转矩的减小。因此,当电动机的裕量较小,或要求高起动转矩的情况下,应考虑加大电动机和变频器的容量。

十二相整流法

近年来,有的变频器生产厂开始在低压变频器的输入侧采用十二相整流(如日本安川公司生产的CIMR-G7A系列变频器)方式,在改善输入电流波形及提高功率因数方面,取得了显著的效果。

(1) 电路的结构特点

十二相整流的特点是:变频器的输入侧接入一个变压器,变压器的副方具有两组绕组,一组接成Y形,另一组接成Δ形,两组绕组分别进行三相全波整流后再并联.字串2

(2) 十二相整流的效果

变频器输入电流的波形可以看出,其波形已经十分接近于正弦波了,高次谐波电流的含有率只有12%; 功率因数PF可提高到0.95以上。

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}