更新时间:2022-08-25 12:42
中间冷却器 intercooler全称“压缩机中间冷却器”、“压气机中间冷却器”,亦称“级间冷却器”,简称“中冷器”,缩机相邻两段之间。与后冷却器相比,具有所承受的气体压力和温度较低,体积相对较大,多数采用水冷却而少数采用风冷却等特点。
中冷器一般只有在安装了涡轮增压的车才能看到。因为中冷器实际上是涡轮增压的配套件,其作用在于提高发动机的换气效率。 涡轮增压的发动机为何会比普通发动机拥有更大的动力,其中原因之一就是其换气的效率比一般发动机的自然进气更高。当空气进入涡轮增压后其温度会大副升高,密度也相应变小,而中冷器正是起到冷却空气的作用,高温空气经过中冷器的冷却,再进入发动机中。如果缺少中冷器而让增压后的高温空气直接进入发动机,则会因空气温度过高导致发动机损坏甚至死火的现象。 对于增压发动机来说,中冷器是增压系统的重要组成部件。
多级压缩时,制冷剂气体在高、低压缩级之间进行的冷却称为中间冷却。有中间完全冷却与不完全冷却之分,前者使低压级排气冷却到中间压力下的干饱和蒸气状态,氨的双级压缩常采用此法,后者用于使低压级排气与中间冷却器中蒸发的蒸气混合,降低了温度,但并未达到中间压力下的干饱和蒸气状态,常用于R12和R22的双级压缩中。
气体压缩后的绝对压力与压缩前的绝对压力之比称为压缩比。又称“压力比”。在制冷机中常以冷凝压力,绝对压力,与蒸发压力,绝对压力,之比代替。单级制冷压缩机,一般为氨压缩机,的压缩比不超过8,R12和R22不超过10。否则,将会使压缩机的输气量减少,排气温度升高,制冷剂节流损失增加,对制冷机的可靠性和经济性不利。在通常情况下,制冷机冷凝压力一般变化不大,压缩比增大的主要原因是蒸发温度低使蒸发压力降低。当压缩比超过上述限值时,应采用双级压缩。当压缩机排气温度升高,气缸壁温上升,这一方面使吸入蒸气的温度升高,比容增加,使吸气量下降,另一方面使润滑条件恶化,压缩机运转发生困难。例如,当冷凝温度为40℃,蒸发温度为,30℃时,单级氨压缩机的排气温度可达160℃以上。显然,不允许这样高的排气温度。通常,压缩机的排气温度应作如下限制,R717(NH3)<140℃
中间冷却器是用以冷却两个压缩级之间被压缩的气体或蒸气的设备。制冷系统的中间冷却器能降低低压级压缩机的排气温度(即高压级的吸气温度),以避免高压级压缩机的排气温度过高,还能使进入蒸发器的制冷剂液得到过冷,减少管中的闪发气体,从而提高压缩机的制冷能力。它应用在氟利昂或氨的双级或多级压缩制冷系统中,连接在低压级的排气管和高压级的吸气管之间。
为便利操作,中间冷却器应尽量做到多台压缩机合用。一般布置于压缩机间的一端或一侧,既要靠近与其配连的高、低压级压缩机,又要靠近设备间,并且要注意中间冷却器不可挡住门窗而影响通风采光。
中间冷却器基础地面以上的高度应不小于150mm,底脚下要垫防腐处理的50mm厚的木块防止冷桥,桶身外包隔热层后距墙不小于200mm。
中间冷却器应设置自动液位控制器和超高液位报警。正常液位可按制造厂规定的液位高度进行控制。报警液位控制在桶身高度2/3处。中间冷却器必须设置安全阀(或自动旁通阀)、压力表和液面指示器。
降低进气温度原理
中冷器的目的主要是为降低进气温度,降低进气温度的原因就得提到涡轮增压的原理。涡轮增压的工作原理,是利用引擎排废气来冲击排气叶片,然后带动另一侧进气叶片,强制压缩空气并送往燃烧室中,由于排废气的温度通常都高达8、9百度,连带使涡轮本体同样处于极高温的状态,如此便会提高流过进气涡轮端空气的温度,加上压缩过的空气同样也会产生热度(因为压缩过的空气分子距离变小,会相互挤压、磨擦产生热能现象),如果这股高温气体未经冷却就进入汽缸中,很容易导致引擎燃烧温度过高,接着就会使汽油预燃发生爆震,让引擎温度更加上升,同时压缩空气的体积也会因热膨胀而大幅降低含氧量,如此一来便会降低增压效益,自然无法产生该有的动力输出。另外,高温也是引擎的隐形杀手,若不设法降低运转温度,一旦遇到天气较热的环境,或是长时间操驾的情况下,很容易增加引擎故障机率,因此才需加装中冷器来降低进气温度。
散热原理
是利用众多的横向Tube分割压缩空气,然后来自车头的外界直向冷风,再经过与Tube相连的散热鳍片,就可达到冷却压缩空气的目的,使进气温度较为接近外界温度,因此若要增加中冷器的散热效率,只要加大其面积及厚度,以增加Tube数量、长度和散热鳍片等,就可达到此目的。
因为愈长、面积愈大中冷器,就愈容易产生进气压力耗损的问题,而这也是现如今主要探讨的问题之一
中冷器主要是由两个部分所组成,Tube和Fin,而Core是两者不断重迭一起的产物。
Tube
第一部分名称为Tube,其功能在于提供一个信道,容纳压缩空气使之流过,因此Tube必须是密闭空间,如此压缩空气才不至于发生泄漏压力的问题,且Tube的外形还分成四方形、椭圆形与长锥形三种,其差别在于风阻与冷却效率间的取舍。
Fin
第二部分名称为Fin,也就是俗称的鳍片,通常位于上下两层Tube间,并紧密的与Tube相黏在一起,其功能在于散热,因为当压缩热空气流经Tube时,会将热量经由Tube的外壁传达到鳍片上,此时若有外界温度较低的空气流经鳍片时,就能顺便将热量带走,达到冷却进气温度的目的。
Core
经由上述两部分不断重迭一起,直到10~20层的结构物,则称为Core,这部分就是中冷器主体。另外,为了使来自涡轮的压缩气体在进入Core前,能有缓冲及蓄压的空间,及出Core后能提升空气流速,通常都会在Core两侧,再装上名为Tank的零件,其外型像漏斗状一般,其上还会设置圆形进出口,以方便连接硅胶管,而中冷器就是经由上述四个部分所组成。
氨用中间冷却器
氨制冷系统的中间冷却器在制取较低蒸发温度时,由于夏季冷凝水温高,压缩机会超出最大压力差或压缩比,因此应设计成双级压缩制冷系统,也就需要使用中间冷却器。国内使用最多的还是一次节流中间完全冷却的循环
低压机缸排出的高温气体由上方进入进气管,进气管直伸入筒身的下半部,沉在氨液中出气,焊有挡板,防止直接冲击筒底,以免把底部积存的油污冲起。高温气体在氨液中被冷却,与此同时,因为截面的扩大、流速减小,流动方向的改变及氨液的阻力及洗涤作用使氨气与氨液和油雾分离。
经过氨液洗涤后的氨气反向向上流动,其中仍夹带有氨液和油滴,当通过多孔的伞形挡板时分离出来,以免被带入高压机缸内然后被高压级吸走。
高压常温的氨液经过中冷器筒内的冷却蛇形盘管,向液氨放热而被冷却,实现过冷,一般过冷度在5℃以内,然后再流向供液站去蒸发器。
中间冷却器的供液,用于洗涤的氨液,进入中间冷却器内有两种方式,一种自中间冷却器下侧面进入,另一种是从中间冷却器顶部进气管进入,这时进液是与低压级排气混合一同进入的。
中间冷却器供液量应使液面稳在一定的高度上。另外,中间冷却器上还接有液位指示器、放油阀、排液阀即氨液出口、安全阀及压力表。中间冷却器是在低温下工作的,所以筒身外部加装隔热材料,蛇形盘管出中间冷却器后也应加装保温层。
关于中间冷却器运行及操作应注意下列事项
中间冷却器内气体流速一般为0.50.8m/s。蛇形盘管内氨液流速一般为0.4-0.7m/s,其出口氨液温度比进口低3-5℃。中间冷却器的中间压力一般在0.3MPa表压左右,不宜超过0.4MPa表压。高压级的吸气过热度,即吸气温度比中间冷却器的中间温度高2-4℃。中间冷却器内的液面一般控制在中间冷却器高度的50%左右,这可通过液面指示器来观察,液面高低受液面控制器,浮球阀,来自动控制,若液面不符合要求,说明自动控制失灵可临时改用手动调节阀来控制液面。液面过高会使高压机缸产生湿冲程或液击若液面过低则冷却低压排气的作用大大降低致使高压吸气过热度明显增高影响制冷系统正常运行。
中间冷却器要定期放油。
氟用中间冷却器
氟利昂制冷系统在双级压缩时大都采用一次节流中间不完全冷却循环,低压级排出的高温气体在管道中间与中间冷却器蒸发汽化的低温饱和气体混合后再被高压级吸入高压机缸,因此氟用中间冷却器比较简单,中间冷却器的供液是由热力膨胀阀自动控制,压力一般在0.2-0.3MPa,靠热力膨胀阀调节,在保证不造成湿冲程的前提下,提供适量的湿饱和蒸气。
高压液体经膨胀阀降压节流后,进入中间冷却器,吸收了蛇形盘管及中间冷却器器壁的热量而汽化,通过出气管进入低压级与高压级连结的管道里与低压级排出的高温气体混合,达到冷却低压排气的效果。而高压常温液体通过蛇形盘管向外散热也降低了温度,实现了过冷,过冷度一般在3-5℃左右。再送到蒸发器的供液膨胀阀,经节流降压进入蒸发器,因为该液体有一定的过冷度所以提高了制冷效果。
产生压力损失
虽然大容量中冷器,因热交换时间延长有更好的冷却效能,但却会发生空气流速变慢及压力损失的问题,且进一步使涡轮迟滞现象更为严重,为什幺?这要从两个方面谈起。相信曾经自己洗过车的读者都知道,要让水管里的水柱喷的较远、较快,只需挤压水管头就可达成,为什幺会这样?那是因为在水压不变的情况下,单位时间的流量不会因管径大小而改变,因此为达到这目的,只要缩小管径,流速自然变快,相反的一增加管径、流速就会变慢,而这情况也发生在整个进气管路里。因为当空气由原先容纳空间较小的进气管路中,流经空间较大的中冷器时,就会产生流速变慢的现象,且此问题对于小出风量涡轮搭配大型中冷器时尤其严重,如此一来将使涡轮迟滞现象更为严重。
另外,当空气由进气管路进入中冷器的Tube时,会因管径粗变细的分流转换,产生流速阻力,造成一定程度的压力损失,再加上许多中冷器为增加冷却效率,都会在Tube里设置鳍片(Tube不一定是中空的),这样也会产生气流阻力,两者相加,涡轮迟滞问题相对会更加明显。值得一提的,上述提到的压力损失,指的并非是增压值的减少,因为进气管路是密闭的,所以排气泄压阀的泄压动作,一定需达到车主设定的增压值才会进行,因此恒压值是不会降低,只不过会延长到达的时间(因为部分压力被消耗掉)及影响增压反应,而这也是压力损失造成的最大影响。既然加装中冷器会使涡轮迟滞更加明显,可是又不能不装,因此如何兼顾冷却效率及压力维持,则成了改装中冷器的首要课题。改装中冷器的两难 一个强调性能化的中冷器,除要有良好的散热能力外,压力损失的减低亦必须考量进去,不过抑制压损与提升冷却效率,在技巧上是完全相反的,譬如一个体积大小相同的中冷器,倘若完全以散热为出发点来设计,里面的Tube就需做得更细且增加鳍片数量,如此就会增加空气阻力;但如果就维持压力层面来着手,又得加粗Tube及减少鳍片,相形之下热交换的效能便较差,所以中冷器的改装绝不如我们想象中的简单。因此要兼顾冷却效率与维持压力的方法,大部分会从Tube与鳍片两部分来着手。首先是Tube部分,其中又分成两种方式,第一:使用管径较粗但管壁极薄的式样,以粗管径来增加空气流通的顺畅度,并利用管壁薄的特点提高散热性。第二:在管径较粗的Tube里,额外设置鳍片在里头的方式,来增加热空气接触金属片面积,以提高热传达量,自然散热效率也就能增加,不过此种设计大多使用在竞技车或是高增压车辆的中冷器里,如此才不至于产生太大的迟滞现象。 接下来是鳍片部分,一般型中冷器的鳍片,就如同图二一般,其形状通常为直条状无任何开口,且中冷器的宽度多长,鳍片就有多长,不过既然鳍片在整个中冷器里,扮演散热功能的主要角色,因此只要增加其接触冷空气的面积,就能提高热交换功率,因此许多中冷器的鳍片,后来都改用图三中,各种形式的设计,其中又以波浪状或是俗称百叶窗设计的鳍片最为流行。不过就散热效率来说,还是以图四中所谓交迭散热鳍片为最佳,但产生的风阻力量也最为明显,因此较常见于日本D1参赛车上,因为这些比赛车辆的速度都不快,可是却需良好的散热效果,来保护游走于高转速的引擎。进行中冷器改装
大体上分成前置式与上置式两种,
就散热性来看当然是位在前保杆内的前置式较为优秀,不过论及反应性的话,则属上置式较占便宜,这便是其管路短带来的增压直接效果,例如Impreza WRCar为缩短前置中冷器的管路,便将节气门反置来降低因管路过长带来的压力耗损,由此不难想见进气管路的整体搭配,亦是改装中冷器时不得不注意的重点。因此在升级或加装中冷器时,除要注意中冷器的大小外,管路的长度尽量减短,并拉成直线化以减少弯角、焊接点等,都是增加空气流速的方法,因为如果有太多焊点与折角的话,气流的顺畅性一定会不佳而发生压损现象。 其次就像前面所谈的中冷器原理,中冷器的Tube过细易增加抵抗影响反应,并且管壁里的温度会较高,同理稍微加粗进气管径也是不错的方法,至于这个管径大小的匹配,主要还是要看涡轮出风口与节气门口径而定。值得一提的是,中冷器前后的进出口管路直径,应该是出口后的管径比入口前粗10%左右,原因在于较大的出口管径,能让出Core的冷却空气,以较快的速度通过中冷器,对于流速的增加,能产生正面的帮助。再来关于中冷器的材质部分,通常都是使用铝合金材质制成,不但富质感增加美观程度,还可因铝质的高热传导性增加散热效果,另外轻量化的优点,也是选择铝合金材质的主要原因之一。至于金属管之间的橡胶连接管,建议大家尽可能采用三或五层包覆的硅橡胶制品,这种硅胶管的延展性极佳、耐高温、高压又不会硬化,所以小至真空管、中至水管、大至整个进气管路都是非常不错的原厂代用品,相当适合运用在高热的涡轮引擎上,再加上宽型对夹不锈钢束环的固定,可避免爆管或漏气的问题产生,且有别于原厂的黑色。
无论是机械增压发动机还是涡轮增压发动机,都需要在增压器与发动机进气歧管之间安装中冷器。