反应离子刻蚀

更新时间:2024-06-19 10:48

反应离子腐蚀技术是一种各向异性很强、选择性高的干法腐蚀技术。它是在真空系统中利用分子气体等离子来进行刻蚀的,利用了离子诱导化学反应来实现各向异性刻蚀,即是利用离子能量来使被刻蚀层的表面形成容易刻蚀的损伤层和促进化学反应,同时离子还可清除表面生成物以露出清洁的刻蚀表面的作用。但是该刻蚀技术不能获得较高的选择比,对表面的损伤大,有污染,难以形成更精细的图形。

工作原理

图1是反应离子刻蚀系统原理图。通常情况下,反应离子刻蚀机的整个真空壁接地, 作为阳极, 阴极是功率电极, 阴极侧面的接地屏蔽罩可防止功率电极受到溅射。要腐蚀的基片放在功率电极上。腐蚀气体按照一定的工作压力和搭配比例充满整个反应室。对反应腔中的腐蚀气体, 加上大于气体击穿临界值的高频电场, 在强电场作用下, 被高频电场加速的杂散电子与气体分子或原子进行随机碰撞, 当电子能量大到一定程度时, 随机碰撞变为非弹性碰撞, 产生二次电子发射, 它们又进一步与气体分子碰撞, 不断激发或电离气体分子。这种激烈碰撞引起电离和复合。当电子的产生和消失过程达到平衡时, 放电能继续不断地维持下去。由非弹性碰撞产生的离子、电子及及游离基(游离态的原子、分子或原子团) 也称为等离子体, 具有很强的化学活性, 可与被刻蚀样品表面的原子起化学反应, 形成挥发性物质, 达到腐蚀样品表层的目的。同时, 由于阴极附近的电场方向垂直于阴极表面, 高能离子在一定的工作压力下, 垂直地射向样品表面, 进行物理轰击, 使得反应离子刻蚀具有很好的各向异性。

图1 反应离子刻蚀系统 MYCRO RIE

刻蚀气体的选择

对于多晶硅栅电极的刻蚀,腐蚀气体可用Cl2或SF6,要求对其下层的栅氧化膜具有高的选择比。刻蚀单晶硅的腐蚀气体可用Cl2/SF6或SiCl4/Cl2;刻蚀SiO2的腐蚀气体可用CHF3或CF4/H2;刻蚀Si3N4的腐蚀气体可用CF4/O2、SF6/O2或CH2F2/CHF3/O2;刻蚀Al(或Al-Si-Cu合金)的腐蚀气体可用Cl2、BCl3或SiCl4;刻蚀W的腐蚀气体可用SF6或CF4;刻蚀光刻胶的腐蚀气体可用氧气。

对于石英材料, 可选择气体种类较多, 比如CF4、CF4+ H2、CHF3 等。我们选用CHF3 气体作为石英的腐蚀气体。其反应过程可表示为:CHF3 + e——CHF+2 + F (游离基) + 2e,SiO 2 + 4F SiF4 (气体) + O 2 (气体)。SiO 2 分解出来的氧离子在高压下与CHF+2 基团反应, 生成CO ↑、CO 2↑、H2O ↑、O F↑等多种挥发性气体[2]。

对于锗材料、选用含F 的气体是十分有效的。然而, 当气体成份中含有氢时, 刻蚀将受到严重阻碍, 这是因为氢可以和氟原子结合, 形成稳定的HF, 这种双原子HF 是不参与腐蚀的。实验证明, SF6 气体对Ge 有很好的腐蚀作用。反应过程可表示为:SF6 + e——SF+5 + F (游离基) + 2e,Ge + 4F——GeF4 (挥发性气体)。

表1 刻蚀气体和主要刻蚀薄膜

设备

典型的(平行板)RIE系统包括圆柱形真空室,晶片盘位于室的底部。晶片盘与腔室的其余部分电隔离。气体通过腔室顶部的小入口进入,并通过底部离开真空泵系统。所用气体的类型和数量取决于蚀刻工艺;例如,六氟化硫通常用于蚀刻硅。通过调节气体流速和/或调节排气孔,气体压力通常保持在几毫托和几百毫托之间的范围内。

存在其他类型的RIE系统,包括电感耦合等离子体(ICP)RIE。在这种类型的系统中,利用RF供电的磁场产生等离子体。虽然蚀刻轮廓倾向于更加各向同性,但可以实现非常高的等离子体密度。

平行板和电感耦合等离子体RIE的组合是可能的。在该系统中,ICP被用作高密度离子源,其增加了蚀刻速率,而单独的RF偏压被施加到衬底(硅晶片)以在衬底附近产生定向电场以实现更多的各向异性蚀刻轮廓。

操作方法

通过向晶片盘片施加强RF(射频)电磁场,在系统中启动等离子体。该场通常设定为13.56兆赫兹的频率,施加在几百瓦特。振荡电场通过剥离电子来电离气体分子,从而产生等离子体

在场的每个循环中,电子在室中上下电加速,有时撞击室的上壁和晶片盘。同时,响应于RF电场,更大质量的离子移动相对较少。当电子被吸收到腔室壁中时,它们被简单地送到地面并且不会改变系统的电子状态。然而,沉积在晶片盘片上的电子由于其DC隔离而导致盘片积聚电荷。这种电荷积聚在盘片上产生大的负电压,通常约为几百伏。由于与自由电子相比较高的正离子浓度,等离子体本身产生略微正电荷。

由于大的电压差,正离子倾向于朝向晶片盘漂移,在晶片盘中它们与待蚀刻的样品碰撞。离子与样品表面上的材料发生化学反应,但也可以通过转移一些动能来敲除(溅射)某些材料。由于反应离子的大部分垂直传递,反应离子蚀刻可以产生非常各向异性的蚀刻轮廓,这与湿化学蚀刻的典型各向同性轮廓形成对比。

RIE系统中的蚀刻条件很大程度上取决于许多工艺参数,例如压力,气体流量和RF功率。 RIE的改进版本是深反应离子蚀刻,用于挖掘深部特征。

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}