更新时间:2022-08-25 16:32
紫外-可见分光光度法(Ultraviolet–visible spectroscopy,UV-Vis),又称紫外-可见分子吸收光谱法,是以紫外线-可见光区域电磁波连续光谱作为光源照射样品,研究物质分子对光吸收的相对强度的方法。通过分子紫外-可见分子吸收光谱法的分析可以进行定性分析,并可依据朗伯-比尔定律进行定量分析。
紫外-可见分光光度法(Ultraviolet–visible spectroscopy,UV-Vis),又称紫外-可见分子吸收光谱法,是以紫外线-可见光区域电磁波连续光谱作为光源照射样品,研究物质分子对光吸收的相对强度的方法。通过分子紫外-可见分子吸收光谱法的分析可以进行定性分析,并可依据朗伯-比尔定律进行定量分析。
当光的波长减小到一定数值时,溶剂对它产生强烈的吸收,即“端吸收”,样品测试就在“端吸收”的透明界限之内。
常用溶剂的透明界限如下表:
紫外线(英语:Ultraviolet,简称为UV),为波长在10nm至400nm之间的电磁波,波长比可见光短,但比X射线长。太阳光中含有部分的紫外线,电弧、水银灯、黑光灯也会发出紫外线。虽然紫外线不属于电离辐射但紫外线仍会引发化学反应与使一些物质发出萤光。
而小于200纳米的紫外线辐射会被空气强烈的吸收,因此称之为真空紫外线。
按照ISO-DIS-21348,紫外辐射分类如下:
在光雕和激光技术中,所称的深紫外线是指波长短于300奈米的紫外线;极紫外线座落在分离的13.5奈米范围的光谱(在未来计划也有6.X奈米),只占有约带宽的2%。在解析学和生命科学的领域,以“XUV”的缩写代表极紫外线的光谱范围特性,以与紫外区(EUV)有所区别。XUV分隔了X射线和真空紫外线(VUV),以内层电子被光电电离的事实-数量级-主导了光子-物质相互作用的效应。这是相对于X射线,真空紫外线的散射主要是与原子和分子的外层电子相互作用导致的(化学活动)。
所以被称为“真空紫外线”(VUV)是因为会被空气强烈的吸收,因此只能用在真空环境下。在这个范围的长波上限,大约在150-200奈米,主要的吸收气体就是空气中的氧。因此可以在无氧的环境中,使用这种波长来工作,纯氮是最常用的,以避免需要真空室。
可见光(Visible light)是电磁波谱中人眼可以看见(感受得到)的部分。这个范围中电磁辐射被称为可见光,或简单地称为光。人眼可以感受到的波长范围一般是落在390到700nm。对应于这些波长的频率范围在430–790 THz。但有一些人能够感知到波长大约在380到780nm之间的电磁波。正常视力的人眼对波长约为555nm的电磁波最为敏感,这种电磁波处于光学频谱的绿光区域。
可见光的主要天然光源是太阳,主要人工光源是白炽物体(特别是白炽灯)。它们所发射的可见光谱是连续的。气体放电管也发射可见光,其光谱是分立的。常利用各种气体放电管加滤光片作为单色光源。
人眼可以看见的光的范围受大气层影响。大气层对于大部分的电磁波辐射来讲都是不透明的,只有可见光波段和其他少数如无线电通讯波段等例外。不少其他生物能看见的光波范围跟人类不一样,例如包括蜜蜂在内的一些昆虫能看见紫外线波段,对于寻找花蜜有很大帮助。
光谱中并不能包含所有人眼和脑可以识别的颜色,如棕色、粉红、紫红等,因为它们需要由多种光波混合,以调整红的浓淡。
可见光的波长可以穿透光学窗口,也就是可穿透地球大气层而衰减不多的电磁波范围(蓝光散射的情况较红光为严重,这也正是为何我们看到天空是蓝色的)。人眼对可见光的反应是主观的定义方式(参见CIE),但是大气层的窗口则是用物理量测方式来定义。之所以称为可见光窗口是因为它正好涵盖了人眼可见的光谱。近红外线(NIR)窗口刚好在人眼可见区段之外,中波长红外线(WMIR)和远红外线(LWIR、FIR)则较人眼可见区段较远。
比尔-朗伯定律(Beer–Lambert law),又称比尔定律或比耳定律(Beer's law)、朗伯-比尔定律、布格-朗伯-比尔定律(Bouguer–Lambert–Beer law),是光吸收的基本定律,适用于所有的电磁辐射和所有的吸光物质,包括气体、固体、液体、分子、原子和离子。比尔-朗伯定律是吸光光度法、比色分析法和光电比色法的定量基础。