更新时间:2023-11-03 15:30
命题和判断(proposition and judgement),两个相互关联的逻辑术语。命题是直陈句的意义,是一种或真或假的思想。推理是由命题组成的。命题的特征在于它有真有假。如实反映事物情况的命题是真的,没有如实反映事物情况的命题是假的。判断是断定者在一定时空条件下断言一命题是真的还是假的。直陈句是命题的语言表达,而命题则是直陈句的思想内容。同一命题可以由不同民族语言的语句表达。同一直陈句可以表达不同的命题,特别是包含代词的直陈句,在不同的语言环境中更可以表达不同的命题。语句、命题和判断分别属于3个不同的领域 。
康德对判断的分类
I.康德根据他的范畴理论对判断作了分类。这个分类对后世的影响很大。康德对判断的分类主要有4个方面:①量,包括全称、特称、单称三种判断;②质,包括肯定、否定、无限(所有S是非P)这几种判断;③关系,有直言(两概念间的关系)、假言(两判断间的关系)、选言(若干判断间的关系)判断。④模态,有或(概)然、实然、确然几种判断。康德所谓的模态,是指认识的程度。他认为组成假言判断、选言判断的判断,都是或然的。
传统逻辑对命题的分类
19世纪下半叶欧洲逻辑读本对命题的分类不尽一致。大体说来,按关系即按命题主谓项之间的关系分,有直言命题、假言命题(后件主谓项的联系以前件为条件)和选言命题
现代逻辑对命题形式的分析 由于推理的有效性只与推理的前提和结论的形式有关,而与作为前提和结论的命题的具体内容无关。因此,在经典的二值逻辑里,命题可以只看成真(记为T)和假(记为F)两种,并统称为真值。它以p命题逻辑)
R。推广来说,最简单的命题的形式为F(x),可读作论域中的个体x具有性质F;较为复杂的形式可以有塡G(x,y),可读作论域中的个体x,y之间具有关系G。在这里,x,y,...称为个体变项;F,G,...称为谓词变项,而F是一元的,G是二元的。n个个体变项之间有n元关系H就记为H(x,...,xn-1)。若以LL(x),这可读为:对论域里所有个体x 而言,x 处在流动的状态。其中,凬x 叫做全称量词,凬是全称量词符号。若以BBFx→Gx),而存在命题、即传统逻辑所谓的特称命题的形式是 ヨx(Fx∧Gx)。所有这些都是现代逻辑里的经典一阶谓词逻辑对命题形式所作的初步分析(见谓词逻辑)。此外,把量词加之于谓词变项,便形成了高阶逻辑。也还可以引入模态词,或分析疑问句、命令句等等,从而建立有关的逻辑理论。