更新时间:2024-01-16 09:32
薛定谔方程(Schrödinger equation),又称薛定谔波动方程(Schrodinger wave equation),是由奥地利物理学家薛定谔提出的量子力学中的一个基本方程,也是量子力学的一个基本假定。
薛定谔方程是量子力学的基本方程,是1926年奥地利理论物理学家薛定谔提出的。它描述微观粒子的状态随时间变化的规律。微观系统的状态由波函数来描写,薛定谔方程即是波函数的微分方程。若给定了初始条件和边界的条件,就可由此方程解出波函数。
薛定谔方程在量子力学中,体系的状态不能用力学量(例如x)的值来确定,而是要用力学量的函数Ψ(x,t),即波函数(又称概率幅,态函数)来确定,因此波函数成为量子力学研究的主要对象。力学量取值的概率分布如何,这个分布随时间如何变化,这些问题都可以通过求解波函数的薛定谔方程得到解答。这个方程是奥地利物理学家薛定谔于1926年提出的,它是量子力学最基本的方程之一,在量子力学中的地位与牛顿方程在经典力学中的地位相当,超弦理论试图统一两种理论。
薛定谔方程是量子力学最基本的方程,亦是量子力学的一个基本假定,其正确性只能靠实验来确定。
量子力学中求解粒子问题常归结为解薛定谔方程或定态薛定谔方程。薛定谔方程广泛地用于原子物理、核物理和固体物理,对于原子、分子、核、固体等一系列问题中求解的结果都与实际符合得很好。
薛定谔方程仅适用于速度不太大的非相对论粒子,其中也没有包含关于粒子自旋的描述。当涉及相对论效应时,薛定谔方程由相对论量子力学方程所取代,其中自然包含了粒子的自旋。
薛定谔提出的量子力学基本方程 。建立于1926年。它是一个非相对论的波动方程。它反映了描述微观粒子的状态随时间变化的规律,它在量子力学中的地位相当于牛顿定律对于经典力学一样,是量子力学的基本假设之一。设描述微观粒子状态的波函数为Ψ(r,t),质量为m的微观粒子在势场V(r,t)中运动的薛定谔方程。在给定初始条件和边界条件以及波函数所满足的单值、有限、连续的条件下,可解出波函数Ψ(r,t)。由此可计算粒子的分布概率和任何可能实验的平均值(期望值)。当势函数V不依赖于时间t时,粒子具有确定的能量,粒子的状态称为定态。定态时的波函数可写成式中Ψ(r)称为定态波函数,满足定态薛定谔方程,这一方程在数学上称为本征方程,式中E为本征值,它是定态能量,Ψ(r)又称为属于本征值E的本征函数。
薛定谔方程是量子力学的基本方程,它揭示了微观物理世界物质运动的基本规律,如牛顿定律在经典力学中所起的作用一样,它是原子物理学中处理一切非相对论问题的有力工具,在原子、分子、固体物理、核物理、化学等领域中被广泛应用。
1900年,马克斯·普朗克在研究黑体辐射中作出将电磁辐射能量量子化的假设,因此发现将能量与频率关联在一起的普朗克关系式。1905年,阿尔伯特·爱因斯坦从对于光电效应的研究又给予这关系式崭新的诠释:频率为ν的光子拥有的能量为hν;其中,因子h是普朗克常数。这一点子成为后来波粒二象性概念的早期路标之一。由于在狭义相对论里,能量与动量的关联方式类似频率与波数的关联方式,因此可以揣测,光子的动量与波长成反比,与波数成正比,以方程来表示这关系式。
路易·德布罗意认为,不单光子遵守这关系式,所有粒子都遵守这关系式。他于1924年进一步提出的德布罗意假说表明,每一种微观粒子都具有波动性与粒子性,这性质称为波粒二象性。电子也不例外的具有这种性质。电子是一种物质波,称为“电子波”。电子的能量与动量分别决定了伴随它的物质波所具有的频率与波数。在原子里,束缚电子形成驻波;这意味着他的旋转频率只能呈某些离散数值。这些量子化轨道对应于离散能级。从这些点子,德布罗意复制出玻尔模型的能级。
在1925年,瑞士苏黎世每两周会举办一场物理学术研讨会。有一次,主办者彼得·德拜邀请薛定谔讲述关于德布罗意的波粒二象性博士论文。那段时期,薛定谔正在研究气体理论,他从阅读爱因斯坦关于玻色-爱因斯坦统计的论述中,接触德布罗意的博士论文,在这方面有很精深的理解。在研讨会里,他将波粒二象性阐述的淋漓尽致,大家都听的津津有味。德拜指出,既然粒子具有波动性,应该有一种能够正确描述这种量子性质的波动方程。他的意见给予薛定谔极大的启发与鼓舞,他开始寻找这波动方程。检试此方程最简单与基本的方法就是,用此方程来描述氢原子内部束缚电子的物理行为,而必能复制出玻尔模型的理论结果,另外,这方程还必须能解释索末菲模型给出的精细结构。
很快,薛定谔就通过德布罗意论文的相对论性理论,推导出一个相对论性波动方程,他将这方程应用于氢原子,计算出束缚电子的波函数。因为薛定谔没有将电子的自旋纳入考量,所以从这方程推导出的精细结构公式不符合索末菲模型。他只好将这方程加以修改,除去相对论性部分,并用剩下的非相对论性方程来计算氢原子的谱线。解析这微分方程的工作相当困难,在其好朋友数学家赫尔曼·外尔鼎力相助下,他复制出了与玻尔模型完全相同的答案。因此,他决定暂且不发表相对论性部分,只把非相对论性波动方程与氢原子光谱分析结果,写为一篇论文。1926年,他正式发表了这论文。
这篇论文迅速在量子学术界引起震撼。普朗克表示“他已阅读完毕整篇论文,就像被一个迷语困惑多时,渴慕知道答案的孩童,现在终于听到了解答”。爱因斯坦称赞,这著作的灵感如同泉水般源自一位真正的天才。爱因斯坦觉得,薛定谔已做出决定性贡献。由于薛定谔所创建的波动力学涉及到众所熟悉的波动概念与数学,而不是矩阵力学中既抽象又陌生的矩阵代数,量子学者都很乐意地开始学习与应用波动力学。自旋的发现者乔治·乌伦贝克惊叹,“薛定谔方程给我们带来极大的解救!”沃尔夫冈·泡利认为,这论文算是最重要的著作之一。
薛定谔给出的薛定谔方程能够正确地描述波函数的量子行为。在那时,物理学者尚不清楚如何诠释波函数,薛定谔试图以电荷密度来诠释波函数的绝对值平方,可并不成功。1926年,玻恩提出概率幅的概念,成功地诠释了波函数的物理意义。但是薛定谔与爱因斯坦观点相同,都不赞同这种统计或概率方法,以及它所伴随的非连续性波函数坍缩。爱因斯坦主张,量子力学是个决定性理论的统计近似。在薛定谔有生的最后一年,写给玻恩的一封信中,他清楚地表示他不接受哥本哈根诠释。
埃尔温·薛定谔(Erwin Schrodinger,1887年—1961年)1887年8月12日出生于奥地利首都维也纳。1906年至1910年,他就学于维也纳大学物理系。1910年获得博士学位。毕业后,在维也纳大学第二物理研究所从事实验物理的工作。第一次世界大战期间,他应征服役于一个偏僻的炮兵要塞,利用闲暇时间研究理论物理。
战后他仍回到第二物理研究所。1920年他到耶拿大学协助维恩工作。1921年薛定谔受聘到瑞士的苏黎世大学任数学物理教授,在那里工作了6年,薛定谔方程就是在这一期间提出的。1927年薛定谔接替普朗克到柏林大学担任理论物理教授。1933年希特勒上台后,薛定谔对于纳粹政权迫害爱因斯坦等杰出科学家的法西斯行为深为愤慨,移居牛津,在马达伦学院任访问教授。同年他与狄拉克共同获得诺贝尔物理学奖。
1936年他回到奥地利任格拉茨大学理论物理教授。不到两年,奥地利被纳粹并吞后,他又陷入了逆境。1939年10月流亡到爱尔兰首府都柏林,就任都柏林高级研究所所长,从事理论物理研究。在此期间还进行了科学哲学、生物物理研究,颇有建树。出版了《生命是什么》一书,试图用量子物理阐明遗传结构的稳定性。1956年薛定谔回到了奥地利,被聘为维也纳大学理论物理教授,奥地利政府给予他极大的荣誉,设定了以薛定谔命名的国家奖金,由奥地利科学院授予。
一维薛定谔方程
三维薛定谔方程
定态薛定谔方程
单粒子薛定谔方程的数学表达形式
这是一个二阶线性偏微分方程,ψ(x,y,z)是待求函数,它是x,y,z三个变量的复数函数(就是说函数值不一定是实数,也可能是虚数)。式子最左边的倒三角是拉普拉斯算符,意思是分别对ψ(x,y,z)的梯度求散度。
这是一个描述一个粒子在三维势场中的定态薛定谔方程。所谓势场,就是粒子在其中会有势能的场,比如电场就是一个带电粒子的势场;所谓定态,就是假设波函数不随时间变化。其中,E是粒子本身的能量;U(x,y,z)是描述势场的函数,假设不随时间变化。薛定谔方程有一个很好的性质,就是时间和空间部分是相互分立的,求出定态波函数的空间部分后再乘上时间部分以后就成了完整的波函数了。
薛定谔方程的解—波函数的性质
简单系统,如氢原子中电子的薛定谔方程才能求解,对于复杂系统必须近似求解。因为对于有Z个电子的原子,其电子由于屏蔽效应相互作用势能会发生改变,所以只能近似求解。近似求解的方法主要有变分法和微扰法。
在束缚态边界条件下并不是E值对应的所有解在物理上都是可以接受的。主量子数、角量子数、磁量子数都是薛定谔方程的解。要完整描述电子状态,必须要四个量子数。自旋磁量子数不是薛定谔方程的解,而是作为实验事实接受下来的。
主量子数n和能量有关的量子数。原子具有分立能级,能量只能取一系列值,每一个波函数都对应相应的能量。氢原子以及类氢原子的分立值为:
,n 越大能量越高电子层离核越远。主量子数决定了电子出现的最大几率的区域离核远近,决定了电子的能量。N=1,2,3,……;常用K、L、M、N……表示。
角量子数l和能量有关的量子数。电子在原子中具有确定的角动量L,它的取值不是任意的,只能取一系列分立值,称为角动量量子化。。l越大,角动量越大,能量越高,电子云的形状也不同。l=0,1,2,……常用s,p,d,f,g 表示,简单的说就是前面说的电子亚层。角量子数决定了轨道形状,所以也称为轨道形状量子数。s为球型,p为哑铃型,d为花瓣,f轨道更为复杂。
磁量子数m是和电子能量无关的量子数。原子中电子绕核运动的轨道角动量,在外磁场方向上的分量是量子化的,并由量子数m决定,m称为磁量子数。对于任意选定的外磁场方向Z,角动量L在此方向上的分量Lz只能取一系列分立值,这种现象称为空间量子化。。磁量子数决定了原子轨道空间伸展方向,即原子轨道在空间的取向,s轨道一个方向(球),p轨道3 个方向,d轨道5 个,f轨道7 个……。l相同,m不同即形状相同空间取向不同的原子轨道能量是相同的。不同原子轨道具有相同能量的现象称为能量简并。
能量相同的原子轨道称为简并轨道,其数目称为简并度。如p轨道有3个简并轨道,简并度为3。简并轨道在外磁场作用下会产生能量差异,这就是线状谱在磁场下分裂的原因。
粒子的自旋也产生角动量,其大小取决于自旋磁量子数(ms)。电子自旋角动量是量子化的其值为,s为自旋量子数,自旋角动量的一个分量Lsz 应取下列分立值:。
原子光谱,在高分辨光谱仪下,每一条光线都是由两条非常接近的光谱线组成,为解释这一现象提出了粒子的自旋。电子的自旋表示电子的两种不同状态,这两种状态有不同的自旋角动量。
电子的自旋不是机械的自身旋转,它是本身的内禀属性,也是新的自由度,如质量和电荷一样是它的内在属性,电子的自旋角动量:ħ /2。
希尔伯特空间与薛定谔方程
一般,物理上将物理状态与希尔伯特空间上的向量,物理量与希尔伯特空间上的算符相对应。这种形式下的薛定谔方程为
H为哈密顿算符。这个方程在这个形式下充分显示出了时间与空间的对应性(时间与能量相对应,正如空间与动量相对应)。这种算符(物理量)不随时间变化而状态随时间变化的对自然现象的描述方法被称为薛定谔绘景,与之对应的是海森伯绘景。
空间坐标算符x与其对应的动量算符p满足以下交换关系:
所谓的薛定谔表示就是将空间算符直接作为x,而动量算符为下面的包含微分的微分算符: