微机械陀螺仪

更新时间:2023-12-11 21:48

微机械MEMS是英文Micro Electro Mechanical systems的缩写,即微电子机械系统。微电子机械系统(MEMS)技术是建立在微米/纳米技术(micro/nanotechnology)基础上的 21世纪前沿技术,是指对微米/纳米材料进行设计、加工、制造、测量和控制的技术。它可将机械构件、光学系统、驱动部件、电控系统集成为一个整体单元的微型系统。这种微电子机械系统不仅能够采集、处理与发送信息或指令,还能够按照所获取的信息自主地或根据外部的指令采取行动。它用微电子技术和微加工技术(包括硅体微加工、硅表面微加工、LIGA和晶片键合等技术)相结合的制造工艺,制造出各种性能优异、价格低廉、微型化的传感器、执行器驱动器微系统。微电子机械系统(MEMS)是近年来发展起来的一种新型多学科交叉的技术,该技术将对未来人类生活产生革命性的影响。它涉及机械、电子、化学、物理、光学、生物、材料等多学科。

定义

微机械陀螺仪(MEMS gyroscope)的工作原理 传统的陀螺仪主要是利用角动量守恒原理,因此它主要是一个不停转动的物体,它的转轴指向不随承载它的支架的旋转而变化。但是微机械陀螺仪的工作原理不是这样的,因为要用微机械技术在硅片衬底上加工出一个可转动的结构可不是一件容易的事。微机械陀螺仪利用科里奥利力——旋转物体在有径向运动时所受到的切向力。下面是导出科里奥利力的方法。有力学知识的读者应该不难理解。

在空间设立动态坐标系(图一)。用以下方程计算加速度可以得到三项,分别来自径向加速、科里奥利加速度切向加速度

如果物体在圆盘上没有径向运动科里奥利力就不会产生。因此,在MEMS陀螺仪的设计上,这个物体被驱动,不停地来回做径向运动或者震荡,与此对应的科里奥利力就是不停地在横向来回变化,并有可能使物体在横向作微小震荡,相位正好与驱动力差90度。(图二)MEMS陀螺仪通常有两个方向的可移动电容板。径向的电容板加震荡电压迫使物体作径向运动(有点像加速度计中的自测试模式),横向的电容板测量由于横向科里奥利运动带来的电容变化(就像加速度计测量加速度)。因为科里奥利力正比于角速度,所以由电容的变化可以计算出角速度。

图三是2轴MEMS陀螺仪。它采用了闭合回路数字输出和传感器芯片跟ASIC芯片分开平放连线的封装方法。来自(BOSCH SMG 070原理图

结构

微机械陀螺仪的设计和工作原理可能各种各样,但是公开的微机械陀螺仪均采用振动物体传感角速度的概念。利用振动来诱导和探测科里奥利力而设计的微机械陀螺仪没有旋转部件、不需要轴承,已被证明可以用微机械加工技术大批量生产。

绝大多数微机械陀螺仪依赖于由相互正交的振动和转动引起的交变科里奥利力。振动物体被柔软的弹性结构悬挂在基底之上。整体动力学系统是二维弹性阻尼系统,在这个系统中振动和转动诱导的科里奥利力把正比于角速度的能量转移到传感模式。

通过改进设计和静电调试使得驱动和传感的共振频率一致,以实现最大可能的能量转移,从而获得最大灵敏度。大多数微机械陀螺仪驱动和传感模式完全匹配或接近匹配,它对系统的振动参数变化极其敏感,而这些系统参数会改变振动的固有频率,因此需要一个好的控制架构来做修正。如果需要高的品质因子(Q),驱动和感应的频宽必须很窄。增加1%的频宽可能降低20%的信号输出。(图五(a)) 还有阻尼大小也会影响信号输出。(图五(b))

(图五)

一般的微机械陀螺仪由梳子结构的驱动部分(图六)和电容板形状的传感部分组成(图八)。有的设计还带有去驱动和传感耦合的结构。(图九)

?

性能参数

MEMS陀螺仪的重要参数包括:分辨率(Resolution)、零角速度输出(零位输出)、灵敏度(Sensitivity)和测量范围。这些参数是评判MEMS陀螺仪性能好坏的重要标志,同时也决定陀螺仪的应用环境。

分辨率是指陀螺仪能检测的最小角速度,该参数与零角速度输出其实是由陀螺仪的白噪声决定。这三个参数主要说明了该陀螺仪的内部性能和抗干扰能力。对使用者而言,灵敏度更具有实际的选择意义。测量范围是指陀螺仪能够测量的最大角速度。不同的应用场合对陀螺仪的各种性能指标有不同的要求。

单双区别

单轴和双轴MEMS角速度传感器(陀螺传感器)新产品群。该系列主要用于游戏机、输入设备导航仪PND(Portable Navigation Device)及数码相机等。

单轴产品可检测偏摆方向。双轴产品备有可检测俯仰方向及滚转方向的品种,以及可检测俯仰方向及偏摆方向的品种。可检测的角速度因品种而异,最大为30~6000度/秒。输出为模拟信号。各产品备有对各轴信号进行1倍(无放大)输出和放大至4倍的两个端口。降低了温度误差以及随时间变化的误差。零点温度漂移为0.05度/秒/℃。噪声方面,可检测的角速度为最大30度/秒的品种控制在了0.014度/秒/√Hz。

电源电压范围为+2.7~3.6V。封装采用5mm×5mm×1.5mm的16端子LGA。工作温度范围为-40~+85℃。

发展概述

根据近几年国内文献,我国在惯性导航中应用研究中的陀螺仪按结构构成大致可以分为三类:机械陀螺仪,光学陀螺仪,微机械陀螺仪。机械陀螺仪指利用高速转子的转轴稳定性来测量载体正确方位的角传感器。自 1910 年首次用于船载指北陀螺罗经以来,人们探索过很多种机械陀螺仪, 液浮陀螺动力调谐陀螺和静电陀螺是技术成熟的三种刚体转子陀螺仪,精度在 10E-6 度/小时~10E-4 度/小时范围内,达到了精密仪器领域内的高技术水平。在 1965 年,我国的清华大学首先开始研制静电陀螺,应用背景是“高精度船用 INS”。 1967-1990,清华大学、常州航海仪器厂、上海交通大学等合作研制成功了静电陀螺工程样机,其零偏漂移误差小于0.5°/h,随机漂移误差小于0.001°/h,中国和美国、俄罗斯并列成为世界上掌握静电陀螺技术的国家。 随着光电技术的发展,激光陀螺光纤陀螺应运而生。与激光陀螺仪相比较,光纤陀螺仪成本较低,比较适合批量生产。我国光纤陀螺的研究起步较晚,但已经 取得了很多可喜的成绩。航天科工集团、航天科技集团、浙大、北方交大、北航等 单位相继开展了光纤陀螺的研究。根据掌握的信息看,国内的光纤陀螺研制精 度已经达到了惯导系统的中低精度要求,有些技术甚至达到了国外同类产品的水平。 从 20 世纪开始,由于电子技术和微机械加工技术的发展,使微机电陀螺成为现实。从 20 世纪 90年代以来,微机电陀螺已经在民用产品上得到了广泛的应用,部分应用在低精度 的惯性导航产品中。我国微机电陀螺的研究开始于 1989 年,已经研制出数百 微米大小的静电电机和3mm的压电电机。清华大学的导航与控制教研组的陀螺技术十分成熟,并已经掌握微机械光波导陀螺技术,现已经做出了微型陀螺仪样机, 并取得了一些数据。东南大学精密仪器与机械系科学研究中心也不断进行关键部件、 微机械陀螺仪和新型惯性装置与GPS 组合导航系统的开发研究,满足了军民两用市场的需要。 总之,随着科学技术的发展,相比于静电陀螺的高成本,成本较低的光纤陀螺和微机械陀螺的精度越来越高,是未来陀螺技术的发展总趋势。

应用

微机械陀螺仪用于测量汽车的旋转速度(转弯或者打滚),它与低加速度计一起构成主动控制系统。所谓主动控制系统就是一旦发现汽车的状态异常,系统在车祸尚未发生时及时纠正这个异常状态或者正确应对个异常状态以阻止车祸的发生。比如在转弯时,系统通过陀螺仪测量角速度就知道方向盘打得过多还是不够,主动在内侧或者外侧车轮上加上适当的刹车以防止汽车脱离车道。这种系统主要安装于高端汽车上。

在汽车MEMS市场,压力计和加速度计还是占较大份额,(图十四)但是随着对汽车安全性能要求越来越高,尤其是在北美和欧洲稳定性主控系统的安装率节节攀升,陀螺仪的市场增长率明显比前两类要快,在2011年预期达到10%。

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}