掺杂光纤放大器

更新时间:2022-07-22 08:31

掺杂光纤放大器又称为掺稀土OFA。制作光纤时,采用特殊工艺,在光纤芯层沉积中掺入极小浓度的稀土元素,如铒、镨或铷等离子,可制作出相应的掺铒、掺镨或掺铷光纤。光纤中掺杂离子在受到泵浦光激励后跃迁到亚稳定的高激发态,在信号光诱导下,产生受激辐射,形成对信号光的相干放大。这种OFA实质上是一种特殊的激光器,它的工作腔是一段掺稀土粒子光纤,泵浦光源一般采用半导体激光器

应用与前景

光纤通信系统工作在两个低损耗窗口:1.55μm波段和1.31μm波段。选择不同的掺杂元素,可使放大器工作在不同窗口。

稀土元素光纤放大器是利用光纤中掺杂稀土元素(如饵和钛等),引起增益而实现光放大的。其优点是工作波长恰好落在光纤通信的最佳波长区(1.3~1.6μm),结构简单,与线路的耦合损耗很小,噪声低,增益高,频带宽,与光纤偏振状态无关,所需泵浦功率也较低。

使用最多的是掺铒光纤放大器EDFA),其工总波长在1530~1560nm之间,也可增益位移使其工作在1570~1610nm。另外掺铥放大器(TDFA)其一个增益带在1480~1510nm,是作为通信窗口中S-band的较理想放大器。还要1310nm的掺镨放大器以及1060nm附近的掺镱放大器等等。

开发意义

容量大、抗电磁干扰能力强等优点,现在高速通信网的主要干线。的传输距离放置再生中继器,以补偿色散与损耗对光信号的劣化作用。然而,“光一电一光”,转换的再生中继器设备昂贵、稳定性差及传输容量小等缺点,光放大器(Optical Amplifier,OA)的和实用化解决了上述问题,而且克服了传统通信的“电子瓶颈”效应,对传输信号的格式和速率均的透明性,而且解决了衰减对光网络传输速率与传输距离的限制,使得整个光纤通信传输系统简单和灵活。,光放大器的对光纤通信的发展了举足轻重的作用,被誉为光纤通信发展的“里程碑”。

信号放大的全光放大器,可以高增益、宽带宽、低噪声、低损耗的全光放大功能,而且它传输线路耦合损耗低、与光偏振状态无关、对传输信号的格式和比特率透明性强等优点,是新一代光纤通信系统中必不可少的关键器件。稀土金属离子激光工作物质的放大器。将激光工作物质掺与光纤芯子即掺杂光纤

直到20世纪80年代中期,英国南安普顿大学在掺铒(Er3+)光纤中重大使得稀土掺杂光纤放大器更实用性,显示出诱人的应用前景。随后,掺稀土元素光纤放大器也了的发展。掺稀土元素的光纤放大器,增益高、掺杂浓度高、长度短的特点;与庞大的光纤通信系统和光纤系统相比,其所使用的光纤较短,故而也称为集总式光纤放大器。

放大谱范围

粒子数反转状态,当信号光纤芯时,激发态上的粒子在外来信号光的作用下产生受激辐射,辐射叠加到外来信号光上而放大。较多的主要是掺铒(Er3+)、镨(Pr3+)、铥(Tm3+)、钕(Nd3+)和镱(Yb3+)的光纤放大器及激光器,图1给出了光纤的损耗谱和掺杂光纤放大器的放大谱范围【2】。分支,它的工作波长位于光纤的低损耗窗口1550nm波段。

放大器,的增益,转向氟基玻璃、磷酸盐玻璃、碲基玻璃等基质的。,铋酸盐玻璃基质掺铒光纤放大器称为当前宽带掺铒光纤放大器的热点【3】。除此之外,表明在掺铒光纤中掺杂铝离子、镱离子等也能增益。

后十几年来光通信与EDFA,均发展。EDFA与其它放大器,输出功率大、增益高、上作带宽宽、与偏振无关、噪声系数低、放大特性与系统比特率及数据格式无关、无串扰等优点,己大容量、高速率光纤通信系统中可缺少的关键器件。EDFA在光纤通信系统中可以前置放大器功率放大器线路放大器和在本地网络LAN中应用。在常规光纤数字通信系统中应用,可以省去的光中继机,而且中继距离也大为,这长途光缆干线系统意义。

稀土元素光纤中的光放大效应,它们的发展密不可分。领域的机构中,美国光学公司AT&T、英国南安普顿大学的电子工程程系和物理系、英国通信实验室(BTRL)等都扮演了的角色,其它在领域内发表过的机构还有惠普、德国汉堡的技术大学、日本NTT、Hoya、住友三菱,Poaroid Coupration、斯坦福大学和GTE、法国Alcatel等。国内从20世纪80年代末和90年代初。上海硅酸盐所、北京建材所、天津46所及武汉邮电院等都了掺铒光纤的研制。在清华大学、北京邮电大学、武汉邮电科学院、南开大学及上海科技大学华南师范大学等也开始了光纤放大器光纤激光器的,并取得了阶段性的。

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}