收敛数列

更新时间:2023-06-29 16:18

收敛数列,数学名词,设数列{Xn},如果存在常数a(只有一个),对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|

性质

唯一性

如果数列Xn收敛,每个收敛的数列只有一个极限。

有界性

定义:设有数列Xn , 若存在M>0,使得一切自然数n,恒有|Xn|有界。

定理1:如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。

数列有界是数列收敛的必要条件,但不是充分条件

保号性

若数列某项起Xn>0(或Xn<0)且{Xn}收敛于a,则a>0(或a<0),

相互关系

收敛数列与其子数列间的关系

子数列也是收敛数列且极限为a恒有|Xn|

若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。

如果数列{}收敛于a,那么它的任一子数列也收敛于a。

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}