欧几里得几何

更新时间:2023-08-14 15:09

欧几里得几何指按照古希腊数学家欧几里得的《几何原本》构造的几何学。

基本信息

欧几里得几何简称“欧氏几何”,是几何学的一门分科。数学上,欧几里得几何是平面和三维空间中常见的几何,基于点线面假设。数学家也用这一术语表示具有相似性质的高维几何

欧氏几何源于公元前3世纪。古希腊数学家欧几里德把人们公认的一些几何知识作为定义和公理(公设),在此基础上研究图形的性质,推导出一系列定理,组成演绎体系,写出《几何原本》,形成了欧氏几何。按所讨论的图形在平面上或空间中,又分别称为“平面几何”与“立体几何”。

其中公理五又称之为平行公设(Parallel Postulate),叙述比较复杂,并不像其他公理那么显然。这个公设衍生出“三角形内角和等于一百八十度”的定理。在高斯(F. Gauss)的时代,公设五就备受质疑,俄罗斯数学家罗巴切夫斯基(Nikolay Ivanovitch Lobachevski)、匈牙利人波尔约(Bolyai)阐明第五公设只是公理系统的一种可能选择,并非必然的几何真理,也就是“三角形内角和不一定等于一百八十度”,从而发现非欧几里得的几何学,即“非欧几何”(non-Euclidean geometry)。

另一方面,欧几里得几何的五条公理并未具有完备性。例如,该几何中有定理:在任意直线段上可作一等边三角形。他用通常的方法进行构造:以线段为半径,分别以线段的两个端点圆心,将两个圆的交点作为三角形的第三个顶点。然而,他的公理并不保证这两个圆必定相交。 因此,许多公理系统的修订版本被提出,其中有希尔伯特公理系统。

《几何原本》

数学研究的对象是“数”与“形”,形的数学就是几何学.它是以直观为主导,以培养人的空间洞察力与思维为目的.从数学发展的历史来看几何学的第一个最重要著作就是欧几里得(Euclid,约公元前330一275年)的《几何原本》.它被世界各国翻译成各种文字.它的印刷量仅次于“圣经”,所以不少人称《几何原本》为数学工作者的“圣经”。《几何原本》在数学史乃至人类思想史上有着无比崇高的地位。

在欧几里德以前,古希腊人已经积累了大量的几何知识,并开始用逻辑推理的方法去证明一些几何命题的结论。欧几里德将早期许多没有联系和未予严谨证明的定理加以整理,写下《几何原本》一书,标志着欧氏几何学的建立。这部划时代的著作共分13卷,465个命题。其中有八卷讲述几何学,包含了现今中学所学的平面几何和立体几何的内容。但《几何原本》的意义却绝不限于其内容的重要,或者其对诸定理的出色证明。真正重要的是欧几里德在书中创造的公理化方法

这部科学著作是发行最广而且使用时间最长的书。后又被译成多种文字,共有二千多种版本。它的问世是整个数学发展史上意义极其深远的大事,也是整个人类文明史上的里程碑。两千多年来,这部著作在几何教学中一直占据着统治地位,至今其地位也没有被动摇,包括中国在内的许多国家仍以它为基础作为几何教材。

公设和公理

欧式几何的传统描述是一个公理系统,通过有限的公理来证明所有的“真命题”。

欧式几何的五条公理是:

1、任意两个可以通过一条直线连接。

2、任意线段能无限延长成一条直线。

3、给定任意线段,可以以其一个端点作为圆心,该线段作为半径作一个

4、所有直角都相等。

5、若两条直线都与第三条直线相交,并且在同一边的内角之和小于两个直角和,则这两条直线在这一边必定相交

第五条公理称为平行公理平行公设),可以导出下述命题:

通过一个不在直线上的点,有且仅有一条不与该直线相交的直线。

平行公理并不像其他公理那么显然。许多几何学家尝试用其他公理来证明这条公理,但都没有成功。19世纪,通过构造非欧几里得几何,说明平行公理是不可证的(若从上述公理体系中去掉平行公理,则可以得到更一般的几何,即绝对几何)。

另外五条公理是:

1、等于同量的量彼此相等。

2、等量加等量,其和仍相等。

3、等量减等量,其差仍相等。

4、彼此能够重合的物体是全等的。

5、整体大于部分。

详细说明

在证明几何命题时,每一个命题总是从再前一个命题推导出来的,而前一个命题又是从再前一个命题推导出来的。我们不能这样无限地推导下去,应有一些命题作为起点。这些作为论证起点,具有自明性并被公认下来的命题称为公理,如“两点确定一条直线”即是一例。同样对于概念来讲也有些不加定义的原始概念,如点、线等。在一个数学理论系统中,我们尽可能少地先取原始概念和不加证明的若干公理,以此为出发点,利用纯逻辑推理的方法,把该系统建立成一个演绎系统,这样的方法就是公理化方法。欧几里德采用的正是这种方法。他先摆出公理、公设、定义,然后有条不紊地由简单到复杂地证明一系列命题。他以公理、公设、定义为要素,作为已知,先证明了第一个命题。然后又以此为基础,来证明第二个命题,如此下去,证明了大量的命题。其论证之精彩,逻辑之周密,结构之严谨,令人叹为观止。零散的数学理论被他成功地编织为一个从基本假定到最复杂结论的系统。因而在数学发展史上,欧几里德被认为是成功而系统地应用公理化方法的第一人,他的工作被公认为是最早用公理法建立起演绎的数学体系的典范。

完善

公理化方法已经几乎渗透于数学的每一个领域,对数学的发展产生了不可估量的影响,公理化结构已成为现代数学的主要特征。而作为完成公理化结构的最早典范的《几何原本》,用现代的标准来衡量,在逻辑的严谨性上还存在着不少缺点。如一个公理系统都有若干原始概念(或称不定义概念),如点、线、面就属于这一类。欧几里德对这些都做了定义,但定义本身含混不清。另外,其公理系统也不完备,许多证明不得不借助于直观来完成。此外,个别公理不是独立的,即可以由其他公理推出。这些缺陷直到1899年德国数学家希尔伯特的在其《几何基础》出版时得到了完善。在这部名著中,希尔伯特成功地建立了欧几里德几何的完整、严谨的公理体系,即所谓的希尔伯特公理体系。这一体系的建立使欧氏几何成为一个逻辑结构非常完善而严谨的几何体系。也标志着欧氏几何完善工作的终结。

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}