正割

更新时间:2024-10-11 21:49

正割(Secant,sec)是直角三角形某个锐角的斜边与邻边的比,即正割=斜边÷角的邻边。。它的定义域不是整个实数集,值域是绝对值大于等于一的实数。它是周期函数,其最小正周期为2π。

符号史

正割的数学符号为sec,出自英文secant。该符号最早由数学家吉拉德在他的著作《三角学》中所用。

定义

直角三角形中

某直角三角形中,一个锐角的斜边与其邻边的比(即角A斜边比邻边),叫做该锐角的正割,用 sec(角)表示 。如设该直角三角形各边为a,b,c,则secA=c/b。

函数图像

在y=secx中,以x的任一使secx有意义的值与它对应的y值作为(x,y)。在直角坐标系中作出的图形叫正割函数的图像,也叫正割曲线。

直角坐标系中

设α是平面直角坐标系xOy中的一个象限角, 是角的终边上一点, 是P到原点O的距离,则α的正割定义为: 。

单位圆定义

图像中给出了用弧度度量的某个公共角。逆时针方向的度量是正角而顺时针的度量是负角。设一个过原点线,同 x 轴正半部分得到一个角 θ,并与单位圆相交。这个交点的 y 坐标等于 sin θ。在这个图形中的三角形确保了这个公式;半径等于斜边并有长度 1,所以有了 sec θ = 1/x 。单位圆可以被认为是通过改变邻边和对边的长度并保持斜边等于 1 查看无限数目的三角形的一种方式。

对于大于2π或小于−2π的角度,简单的继续绕单位圆旋转。在这种方式下,正割变成了周期为2π的周期函数: 。

对于任何角度θ和任何整数k。

级数定义

正割也能使用泰勒级数来定义:

与其他函数

正割函数余弦函数互为倒数。

即: 。

微分方程定义

sec的微分是sectan乘积

sec导数如下:

另外

所以微分方程定义为:

指数定义

恒等式

和差角公式

巴洛正割积分

巴洛在1670年提出正割的积分

正割定理

一个三角形。它的三个内角及其对边。

有一些含有正割的恒等式,满足任意三角形ABC:

这些实际上是射影定理倒数

性质

y=secx的性质

(1)定义域,{x|x≠kπ+π/2,k∈Z}

(2)值域,|secx|≥1。即secx≥1或secx≤-1;

(3)y=secx是偶函数,即sec(-x)=secx。图像对称于y轴;

(4)y=secx是周期函数。周期为2kπ(k∈Z,且k≠0),最小正周期T=2π。

正割与余弦互为倒数,余割正弦互为倒数。

(5) secθ=1/cosθ

(6)

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}