更新时间:2022-08-25 16:47
物理磁阻效应是指某些金属或半导体的电阻值随外加磁场变化而变化的现象。同霍尔效应一样,磁阻效应也是由于载流子在磁场中受到洛伦兹力而产生的。在达到稳态时,某—速度的载流子所受到的电场力与洛伦兹力相等,载流子在两端聚集产生霍尔电场,比该速度慢的载流子将向电场力方向偏转,比该速度快的载流子则向洛伦兹力方向偏转。这种偏转导致载流子的漂移路径增加。或者说,沿外加电场方向运动的载流子数减少,从而使电阻增加。这种现象称为磁阻效应。
物理磁阻效应是指某些金属或半导体的电阻值随外加磁场变化而变化的现象。金属或半导体的载流子在磁场中运动时,由于受到电磁场的变化产生的洛伦兹力作用,产生了磁阻效应。
若外加磁场与外加电场垂直,称为横向磁阻效应;若外加磁场与外加电场平行,称为纵向磁阻效应。一般情况下,载流子的有效质量的驰豫时时间与方向无关,则纵向磁感强度不引起载流子偏移,因而无纵向磁阻效应。
磁阻效应主要分为:常磁阻,巨磁阻,超巨磁阻,异向磁阻,穿隧磁阻效应等
常磁阻(OrdinaryMagnetoresistance,OMR)
对所有非磁性金属而言,由于在磁场中受到洛伦兹力的影响,传导电子在行进中会偏折,使得路径变成沿曲线前进,如此将使电子行进路径长度增加,使电子碰撞机率增大,进而增加材料的电阻。磁阻效应最初于1856年由威廉·汤姆森,即后来的开尔文爵士发现,但是在一般材料中,电阻的变化通常小于5%,这样的效应后来被称为“常磁阻”(ordinarymagnetoresistance,OMR)。
巨磁阻(GiantMagnetoresistance,GMR)
所谓巨磁阻效应,是指磁性材料的电阻率在有外磁场作用时较之无外磁场作用时存在巨大变化的现象。巨磁阻是一种量子力学效应,它产生于层状的磁性薄膜结构。这种结构是由铁磁材料和非铁磁材料薄层交替叠合而成。当铁磁层的磁矩相互平行时,载流子与自旋有关的散射最小,材料有最小的电阻。当铁磁层的磁矩为反平行时,与自旋有关的散射最强,材料的电阻最大。
超巨磁阻(ColossalMagnetoresistance,CMR)
超巨磁阻效应(也称庞磁阻效应)存在于具有钙钛矿(Perovskite)ABO3的陶瓷氧化物中。其磁阻变化随着外加磁场变化而有数个数量级的变化。其产生的机制与巨磁阻效应(GMR)不同,而且往往大上许多,所以被称为“超巨磁阻”。 如同巨磁阻效应(GMR),超巨磁阻材料亦被认为可应用于高容量磁性储存装置的读写头。不过,由于其相变温度较低,不像巨磁阻材料可在室温下展现其特性,因此离实际应用尚需一些努力。
异向磁阻(Anisotropicmagnetoresistance,AMR)
有些材料中磁阻的变化,与磁场和电流间夹角有关,称为异向性磁阻效应。此原因是与材料中s轨域电子与d轨域电子散射的各向异性有关。由于异向磁阻的特性,可用来精确测量磁场。
穿隧磁阻效应(Tunnel Magnetoresistance,TMR)
穿隧磁阻效应是指在铁磁-绝缘体薄膜(约1纳米)-铁磁材料中,其穿隧电阻大小随两边铁磁材料相对方向变化的效应。此效应首先于1975年由Michel Julliere在铁磁材料(Fe)与绝缘体材料(Ge)发现;室温穿隧磁阻效应则于1995年,由Terunobu Miyazaki与Moodera分别发现。此效应更是磁性随机存取内存与硬盘中的磁性读写头(readsensors)的科学基础。
材料的电阻会因为外加磁场而增加或减少,则称电阻的变化称为磁阻(MR)。磁阻效应是1857年由英国物理学家威廉·汤姆森发现的,它在金属里可以忽略,在半导体中则可能由小到中等。从一般磁阻开始,磁阻发展经历了巨磁阻(GMR)、庞磁阻(CMR)、穿隧磁阻(TMR)、直冲磁阻(BMR)和异常磁阻(EMR)。
磁阻效应广泛用于磁传感、磁力计、电子罗盘、位置和角度传感器、车辆探测、GPS导航、仪器仪表、磁存储(磁卡、硬盘)等领域。
磁阻器件由于灵敏度高、抗干扰能力强等优点在工业、交通、仪器仪表、医疗器械、探矿等领域得到广泛应用,如数字式罗盘、交通车辆检测、导航系统、伪钞检别、位置测量等。
其中最典型的锑化铟(InSb)传感器是一种价格低廉、灵敏度高的磁阻器件磁电阻,有着十分重要的应用价值。
2007年诺贝尔物理学奖授予来自法国国家科学研究中心的物理学家艾尔伯·费尔和来自德国尤利希研究中心的物理学家皮特·克鲁伯格,以表彰他们发现巨磁电阻效应的贡献。