第三代测序技术

更新时间:2023-11-24 08:04

第三代测序技术是指单分子测序技术。DNA测序时,不需要经过PCR扩增,实现了对每一条DNA分子的单独测序。第三代测序技术也叫从头测序技术,即单分子实时DNA测序

技术原理

第三代测序技术原理主要分为两大技术阵营:

第一大阵营是单分子荧光测序,代表性的技术为美国螺旋生物(Helicos)的SMS技术和美国太平洋生物(Pacific Bioscience)的SMRT技术。脱氧核苷酸荧光标记,显微镜可以实时记录荧光的强度变化。当荧光标记的脱氧核苷酸被掺入DNA链的时候,它的荧光就同时能在DNA链上探测到。当它与DNA链形成化学键的时候,它的荧光基团就被DNA聚合酶切除,荧光消失。这种荧光标记的脱氧核苷酸不会影响DNA聚合酶的活性,并且在荧光被切除之后,合成的DNA链和天然的DNA链完全一样。

第二大阵营为纳米孔测序,代表性的公司为英国牛津纳米孔公司。新型纳米孔测序法(nanopore sequencing)是采用电泳技术,借助电泳驱动单个分子逐一通过纳米孔 来实现测序的。由于纳米孔的直径非常细小,仅允许单个核酸聚合物通过,而ATCG单个碱基的带电性质不一样,通过电信号的差异就能检测出通过的碱基类别,从而实现测序。

解决关键技术

第一:因为在显微镜实时记录DNA链上的荧光的时候,DNA链周围的众多的荧光标记的脱氧核苷酸形成了非常强大的荧光背景。这种强大的荧光背景使单分子的荧光探测成为不可能。Pacific Biosciences公司发明了一种直径只有几十纳米的纳米孔[zero-mode waveguides (ZMWs)],单分子的DNA聚合酶被固定在这个孔内。在这么小的孔内,DNA链周围的荧光标记的脱氧核苷酸有限,而且由于A,T,C,G这四种荧光标记的脱氧核苷酸非常快速地从外面进入到孔内又出去,它们形成了非常稳定的背景荧光信号。而当某一种荧光标记的脱氧核苷酸被掺入到DNA链时,这种特定颜色的荧光会持续一小段时间,直到新的化学键形成,荧光基团被DNA聚合酶切除为止。

第二:共聚焦显微镜实时地快速地对集成在板上的无数的纳米小孔同时进行记录。

技术特点

1、它实现了DNA聚合酶内在自身的反应速度,一秒可以测10个碱基,测序速度是化学法测序的2万倍。

2、它实现了DNA聚合酶内在自身的延续性,一个反应就可以测非常长的序列。二代测序可以测到上百个碱基,但是三代测序就可以测几千个碱基。

3、它的精度非常高,达到99.9999%。

4、直接测RNA的序列。既然DNA聚合酶能够实时观测,那么以RNA为模板复制DNA的逆转录酶也同样可以。RNA的直接测序,将大大降低体外逆转录产生的系统误差

5、第二个是直接测甲基化的DNA序列。实际上DNA聚合酶复制A、T、C、G的速度是不一样的。正常的C或者甲基化的C为模板,DNA聚合酶停顿的时间不同。根据这个不同的时间,可以判断模板的C是否甲基化。

平台比较

技术的应用

基因组测序

由于具有读长长的特点,SMRT测序平台在基因组测序中能降低测序后的Contig数量,明显减少后续的基因组拼接和注释的工作量,节省大量的时间[25]。Christophern等[26]仅仅用0.5*的Pacbio RS系统长度的数据与38*的二代测序(NGS)的测序数据,对马达加斯加的一种指猴基因组进行拼装,大幅度提高了数据的质量和完整度,同时借助Pacbio RS的帮助将原有的Contig数量减少了10倍。DavidA.等利用Pachio RS平台C2试剂通过全球合作几天内就完成了从德国大肠杆菌疫情中获得的大肠杆菌样品以及近似菌株的测序和数据分析,最终获得了2900bp的平均读长以及99.998%的一致性准确度。在对霍乱病菌的研究中,第三代测序技术已初现锋芒。研究人员对5株霍乱菌株的基因组进行了测序研究,并与其他23株霍乱弧菌的基因组进行对比。结果发现海地霍乱菌株与2002年和2008年在孟加拉国分离得到的变异霍乱弧菌ElTorO1菌株之间关系密切,而与1991年拉丁美洲霍乱分离株的关系较远。相对NGS的优势就是能更快获得结果,因此该系统在鉴定新的病原体和细菌的基因组测序方面得到很广泛的应用。

甲基化研究

SMRT技术采用的是对DNA聚合酶工作状态进行实时监测的方法,聚合酶合成每一个碱基,都有一个时间段,而当模板碱基带有修饰时,聚合酶会慢下来,使带有修饰的碱基两个相邻的脉冲峰之间的距离和参考序列的距离之间的比值结果大于1,由此就可以推断这个位置有修饰。甲基化研究中关于5mC和5hmC(5mC的羟基化形式)是甲基化研究中的热点。但现有的测序方法无法区分5mC和5hmC。美国芝加哥大学利用SMRT测序技术和5hmC的选择性化学标记方法来高通量检测5hmC。通过聚合酶动力学提供的信息,可直接检测到DNA甲基化,包括N6甲基腺嘌呤、5mC和5hmC,为表观遗传学研究打开了一条通路。

突变鉴定

单分子测序的分辨率具有不可比拟的优势,而且没有PCR扩增步骤,就没有扩增引入的碱基错误,该优势使其在特定序列的SNP检测,稀有突变及其频率测定中大显身手。例如在医学研究中,对于FLT3基因是否是急性髓细胞白血病AML)的有效治疗靶标一直存在质疑。研究人员用单分子测序分析耐药性患者基因,意外发现耐药性与FLT3基因下游出现的稀有新突变有关,重新证明了FLT3基因是这种最常见白血病—急性髓细胞白血病(AML)的有效治疗靶标,打破了一直以来对于这一基因靶标的疑惑。凭借PacBio平均3000bp的读长,获得了更多基因下游的宝贵信息,而基于单核酸分子的测序能够检测到低频率(低至1%)罕见突变,正是这项成果的关键所在。

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}