更新时间:2024-07-27 19:07
第二类间断点是指函数的左右极限至少有一个不存在。第二类间断点有非常多种,如无穷间断点,振荡间断点,单侧间断点,狄利克雷函数间断点, 黎曼函数间断点等等,但大学数学及考研只要求掌握无穷间断点与振荡间断点,所以词条只详解这两类。
间断点分为可去间断点、跳跃间断点、无穷间断点、震荡间断点,其中可去间断点和跳跃间断点属于第一类间断点。在第一类间断点中,有两种情况,左右极限存在是前提。左右极限相等,但不等于该点函数值f(x0)或者该点无定义时,称为可去间断点,如函数y=(x^2-1)/(x-1)在点x=1处;左右极限在该点不相等时,称为跳跃间断点,如函数y=|x|/x在x=0处。另外, [1] 非第一类间断点即为第二类间断点(discontinuity of second kind)。
设Xo是函数f(x)的间断点,那么
如果f(x-)与f(x+)都存在,则称Xo为f(x)的第一类间断点。又如果
(i),f(x-)=f(x+)≠f(x),或f(x)无意义,则称Xo为f(x)的可去间断点。
(ii),f(x-)≠f(x+),则称Xo为f(x)的跳跃间断点。