更新时间:2024-05-31 13:27
大约在公元前300年,欧几里得就证明了素数有无穷多个。设2,3,…,p是不大于p的所有素数,q=2*3*…*p+1。容易看出q不是2,3,…,p的倍数。由于q的最小正除数一定是素数,因此,或者q本身是一个素数,或者q可被p与q之间的某两个素数所整除[比如:2*3*5*7*11*13+1=30031=59*509]。所以必有大于p的素数存在,由此即知素数有无穷多个。
素数在自然数中占有极其重要的地位,但是它的变化非常不规则。最初的研究方法,是通过观察素数表来发现素数分布的性质。现有的较完善的素数表是D.B.扎盖尔于1977年编制的,列出了不大于50000000的所有素数。从素数表可以看出:在1到100中间有25个素数,在1到1000中间有168个素数,在1000到2000中间有135个素数,在2000到3000中间有127个素数,在3000到4000中间有120个素数,在4000到5000中间有119个素数,在5000到10000中间有560个素数。
两个差等于2的一对素数,称为孪生素数。例如,3和5;5和7;11和13;17和19;29和31;41和43;59和61;71和73;101和103;…10016957和10016959;都是孪生素数。迄今所知的最大孪生素数是1159142985×22304-1和1159142985×22304+1;它们是A.O.L.阿特金和N.W.里克特于1979年得到的。
所谓孪生素数猜想,即存在无穷多对孪生素数。这个猜想至今没有解决,但认为它是正确的可能性很大。
2^P-1型的数称为梅森数,并以Mp记之;而 2^P-1型的素数称为梅森素数。这种特殊素数貌似简单,但探究难度却极大。它不仅需要高深的理论和纯熟的技巧,而且还需要进行艰巨的计算。梅森素数历来是数论研究的一项重要内容,也是当今科学探索的热点和难点之一。
2013年2月6日,据英国《新科学家》杂志网站报道,柯蒂斯·库珀(Curtis Cooper)领导的研究小组于1月25日日发现了已知的最大梅森素数--“2^57885161-1”,该素数有17,425,170位,它是目前已知的最大素数。如果用普通字号将这个巨数连续写下来,其长度可超过65公里!迄今人们已经发现48个梅森素数。
1772年,有“数学英雄”美名的瑞士数学大师欧拉在双目失明的情况下,靠心算证明了2^31-1(即2147483647)是第8个梅森素数。这个具有10位的素数,堪称当时世界上已知的最大素数。
在“手算笔录”的年代,人们仅找到12个梅森素数。而计算机的诞生和网格技术的出现,加速了梅森素数探究的进程。1996年初,美国数学家、程序设计师乔治·沃特曼编制了一个梅森素数计算程序,并把它放在网页上供全球数学家和业余数学爱好者免费使用。它就是举世闻名的GIMPS项目。
为了激励人们寻找梅森素数和促进网格技术发展,总部设在美国的电子新领域基金会(EFF)于1999年设立了专项奖金悬赏参与GIMPS项目的梅森素数发现者。它规定向第一个找到超过100万位数的个人或机构颁发5万美元。后面的奖金依次为:超过1000万位数,10万美元;超过1亿位数,15万美元;超过10亿位数,25万美元。不过,绝大多数人参与该项目并不是为了金钱,而是出于好奇心、求知欲和荣誉感。
梅森素数的分布极不规则。探索梅森素数的分布规律似乎比寻找新的梅森素数更为困难。数学家们在长期的摸索中,提出了一些猜想。英国数学家香克斯、美国数学家吉里斯、法国数学家托洛塔和德国数学家伯利哈特就曾分别给出过关于梅森素数分布的猜测,但他们的猜测有一个共同点,就是都以近似表达式给出;而它们与实际情况的接近程度均未尽如人意。中国数学家及语言学家周海中经过多年的研究,于1992年首次给出了梅森素数分布的精确表达式,为人们寻找这一素数提供了方便;后来这一重大成果被国际上命名为“周氏猜测”。美籍挪威数论大师、菲尔茨奖和沃尔夫奖得主阿特勒·塞尔伯格认为:周氏猜测具有创新性,开创了富于启发性的新方法;其创新性还表现在揭示新的规律上。
关于素数个数的研究是素数分布中最重要的问题之一。以 π(x)表示不大于x的素数个数,例如,π(2)=1,π(3)=2,π(100)=25,π(1000)=168。欧几里得早就证明了素数有无穷多个,即。从表可以看出:①x越大,π(x)与x的比值越接近于0;②x越大,π(x)与x/lnx的比值越接近于1。A.-M.勒让德和C.F.高斯猜测即通常所称的素数定理。它是素数分布理论的中心定理。在这方面首先做出贡献的是∏.Л.切比雪夫,他在1852年左右证明了存在两个正常数с1,с2,使得不等式с1x/lnx≤π(x)≤с2x/lnx成立,其中x≥2。在1896年,J.(-S.)阿达马和C.瓦莱·普桑彼此独立而又几乎同时证明了素数定理。他们的证明都使用了高深的复变函数论知识。因此,能否以尽可能初等的方法来证明素数定理,则成为数学家一直探讨的重要问题。1949年,A.赛尔伯格和P.爱尔特希给出了素数定理的初等证明,除了极限、lnx和e的性质之外,没有用到其他的分析知识,但证明过程十分复杂。他们的证明是基于赛尔伯格的著名恒等式:
当x≥1时有
式中,表示对所有不超过x的素数求和,记号O的定义如下:设g(x)>0,ƒ(x)为一复值函数, α≤x≤b)。若存在一个与x无关的正常数M,使得当α≤x≤b)时有|ƒ(x)|≤Mg(x),则记为ƒ(x)=O(g(x)),M称为记号O所含之常数。于是某一满足上述条件的函数ƒ(x),就可用O(g(x))代之。
有误差项的素数定理是指寻求误差π(x)-lix的最佳估计,,它比x/lnx更接近于π(x)。C.瓦莱·普桑于1900年首先证明了这里с是一正的常数。H.von科赫于1901年在黎曼假设(见黎曼ζ函数)下证明了
O(xlnx)。
И.М.维诺格拉多夫等于1958年借助于他的三角和估计方法,得到π(x)-lix=O(xexp(-с(lnx))),ε为任意正数,с是和ε有关的正常数。误差项π(x)-lix的变化是极不规则的。设ƒ(x)是实函数,如果存在与x无关的正常数α,使得任意大的x满足ƒ(x)>αx,则记为ƒ(x)=Ω(x);若使得任意大的x满足ƒ(x)<- αx,则记为ƒ(x)=Ω-(x)。若这两种情形同时出现,则记为ƒ(x)=Ω(x)。J.E.李特尔伍德于1914年证明了:当x→∞时,有π(x)-lix=Ω((xlnlnlnx)/lnx)。
算术级数中的素数定理 P.G.L.狄利克雷于1837年首先证明了首项与公差互素的算术级数中有无限多个素数。设整数q≥3.1≤l≤q,(l,q)=1。以π(x,q,l)表首项为l、公差为q的算术级数中不超过x的素数之个数。类似于素数定理,对于固定的q,容易证明: 式中φ(q)表示不超过q且与q互素的正整数的个数。这就是通常所说的算术级数中的素数定理。关于误差项估计,A.佩奇于1935年和C.L.西格尔与A.瓦尔菲施于1936年证明了:对任意正数h,当3≤q≤(lnx)时,有
式中с为绝对正常数;记号O中所含的常数仅与h有关,而与q无关。
设k≥3,1≤l≤k,(l,k)=1。以p(k,l)表算术级数knl(n=0,1,2,…)中的最小素数。S.乔拉猜测p(k,l)=O(k),其中ε为任意小的正数。ю.Β.林尼克于1944年首先证明了存在绝对常数с,使得p(k,l)=O(k)。潘承洞于1957年首先指出с是可以计算的,并定出了с的值。目前最好的结果с≤17是陈景润于1979年得到的。
设pn是第n个素数,是相邻的两个素数之差。在黎曼假设下,H.克拉默于1921年证明了无条件结果是赫斯-布朗和H.伊瓦尼克于1979年得到的。另一方面,关于dn的下界,E.邦别里和H.达文波特于1966年证明了:M.N.赫胥黎于1977年改进为E≤0.4425。猜测应有E=0。关于dn还有许多有趣的研究。