线性相关

更新时间:2024-10-05 18:13

线性代数里,矢量空间的一组元素中,若没有矢量可用有限个其他矢量的线性组合所表示,则称为线性无关或线性独立(linearly independent),反之称为线性相关(linearly dependent)。

定义

向量空间V的一组向量A: ,如果存在不全为零的数 k1, k2, ···,km , 使

则称向量组A是线性相关的,否则数 k1, k2, ···,km全为0时,称它是线性无关

由此定义看出 是否线性相关,就看是否存在一组不全为零的数 k1, k2, ···,km使得上式成立。

即是看这个齐次线性方程组是否存在非零解,将其系数矩阵化为最简形矩阵,即可求解。此外,当这个齐次线性方程组的系数矩阵是一个方阵时,这个系数矩阵存在行列式为0,即有非零解,从而 线性相关。

注意

定理

1、向量a1,a2, ···,an(n≧2)线性相关的充要条件是这n个向量中的一个为其余(n-1)个向量的线性组合

2、一个向量线性相关的充分条件是它是一个零向量

3、两个向量a、b共线的充要条件是a、b线性相关。

4、三个向量a、b、c共面的充要条件是a、b、c线性相关。

5、n+1个n维向量总是线性相关。【个数大于维数必相关】

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}