更新时间:2024-06-24 14:37
雷雨云由一大团翻腾、波动的水、冰晶和空气组成。当云团里的冰晶在强烈气流中上下翻滚时,水分会在冰晶的表面凝结成一层层冰,形成冰雹。这些被强烈气流反复撕扯、撞击的冰晶和水滴充满了静电。其中重量较轻、带正电的堆积在云层上方;较重、带负电的聚集在云层底部。至于地面则受云层底部大量负电的感应带正电。当正负两种电荷的差异极大时,就会以闪电的形式把能量释放出来。
大多数研究资料表明,雷雨云上部带正电荷,下部带负电荷,云中基本为正负双极性分布。有时还观测到雷雨云下底部有一个或几个局部弱正电荷区,它往往与太阳雨过程相关联。当雷雨云在空中漂移运动时,雷雨云对大地感应出的是异种电荷,也随着雷雨云在雷雨云下方跟着雷雨云移动,它们之间的电场强度,也在不断变化。
雷雨云是对流云发展的成熟阶段,它往往是从积云发展起来的。发展完整的对流云,其生命史可以分为以下三个阶段:
这一阶段主要是从淡积云向浓积云发展。云的垂直尺度有较大的增长,云顶轮廓逐渐清楚,呈圆孤状或菜花形,云体耸立成塔状。这样的云我们在盛夏常常看到。在形成阶段中,云中全部为比较规则的上升气流,在云的中、上部为最大上升气流区。上升气流的垂直廓线呈抛物线型。一般不会产生雷电。在其形成阶段,淡积云向浓积云发展。云的垂直尺度有较大的增长,云顶的轮廓逐渐清晰,呈圆弧状或花菜形,云体耸立成塔状。在这一阶段,云中全部为比较规则的上升气流,云的中上部是最大气流上升区。此阶段经历的时间大约为15分钟,一般不会产生雷电和降水。
从浓积云发展成积雨云,就伴随雷电活动和降水,这是成熟阶段的征象。在成熟阶段,云除了有规则的上升气流外,同时也有系统性的下沉气流。上升气流通常在云的移动方向的前部。往往在云的右前侧观测到最强的上升气流。上升气流一般在云的中、上部达到最大值,浓积云逐渐发展成积雨云。此阶段,云中除了有规则的上升气流外,同时也有系统性的下沉气流。上升气流通常在云的移动方向的前部,气流的最大值一般出现在云的中上部,其速度可以达25—60米/秒,甚至更高。下沉气流是一支从云的中下部倾斜地穿出来的气流,它对雷雨云的发展成熟不单纯起消极作用,还与上升气流一起构成云中的铅直环流。对流云的厚度与起水平尺度具有同一数量级。这是对流云与其他种类云最重要的差异之一。
一阵电闪雷鸣、狂风暴雨之后,雷雨云就进入了消散阶段。这时,云中已为有规则的下沉气流所控制。云体逐渐崩溃,云上部很快演变成中、高云系,云底有时还有一些碎积云或碎层云。
1、空气中含有足够的水蒸气;
2、大气中的空气形成温度差,以使潮湿的空气形成强大的上升气流;
3、没有破坏或防碍强烈而持久的上升气流形成的因素。
雷雨云的形成需要一定的条件,从局地条件来看,首先,大气的垂直层结构必须是不稳定的,以便诱发对流活动的发生和发展;其次,空气中要有足够的水分,能够满足云的生成。从天气背景来看,应当有促发局地对流发展的天气形势,如冷锋过境、正在填塞中的低压、反气旋后部、小波动以及高空下股冷空气活动等。雷雨云往往由积云发展而来,它是对流云发展的成熟阶段。一个发展完整的对流云,一般都有一个形成、成熟和消散的过程。
不同的地方,不同的发展阶段,对流云的厚度相差十分悬殊。在中国西北高原地区,由于大气中的水汽不充沛,对流云发展到积雨云阶段也只有3—4公里厚;而中、高纬度的锋面性对流云,在发展初期其厚度即可达到5—6公里;在热带海洋地区,例如美国的佛罗里达,由于水汽充足,对流云发展十分旺盛,其云顶抵达平流层,高度可达20公里以上,其水平尺度一般约为30—40公里。在大多数情况下,云体先在垂直方向较快增长,当云顶达到一定的高度并比较稳定之后,才在水平方向较快地增长。
雷雨云成熟的标志是伴有雷电活动和降水,当下沉气流在地面形成阵风时,地面温度开始明显下降。一阵电闪雷鸣,狂风暴雨过后,雷雨云就进入消散阶段。在消散阶段,云中已为有规则的下沉气流所控制。云体逐渐崩溃,云上部很快演变成高积云和伪卷云,而云底有时还有一些碎积云或碎层云,它们是由降水在地面蒸发后上升凝聚而成的。
在雷雨云的下方,大气的电场与晴天正好反向,也就是说,此时地面带正电荷。它是由雷雨云感应产生的。这说明雷雨云带有负电荷。大量的研究证明,在雷雨云中存在着正、负两种电。正电荷集中在云的上部,而负电荷集中在云的中下部。在通常情况下,云下部的负电荷略多于上部的正电荷。有时,在云的底部还有一个范围不大的带正电荷区域,它一般处于云的前部,这里上升气流有局部的极大值。
雷雨云中的电荷,主要是云中水滴、冰晶和霰(俗称雪子)在重力和强烈上升气流共同作用下,不断发生碰撞摩擦而产生的.当冰晶和霰相碰时,短暂的摩擦作用使霰表面局部温度比冰晶高,结果使霰表面带上负电,冰晶带上正电,这就是所谓的温差效应。当冰晶与霰分开时,结果正负电荷也离开了。当水滴在霰表面冻结时,水滴里外温度也不一致,水滴外层温度低先冻结呈正电性,里面温度高呈负电性。一旦内部水冻结时,体积迅速膨胀,外层冰壳破裂,冰屑带着正电荷飞散出去,而留下的冻水滴上仍带着负电荷.这样正负电荷也发生了分离,冰屑较轻,被上升气流带到云层顶部,所以雷雨云上面带正电荷。强烈上升的气流也会将云中大水滴冲破,形成许多带负电的小水珠和带正电的较大水珠。带正电的较大水珠下沉直至被上升气流支持在云层底部的局部区域.前面所述带负电的小水珠和霰等逐渐扩散到雷雨云下部广大区域。
雷电放电是由带电荷的雷云引起的。雷云带电原因的解释很多,但还没有获得比较满意的一致认识。一般认为雷云是在有利的大气和大地条件下,由强大的潮湿的热气流不断上升进入稀薄的大气层冷凝的结果。强烈的上升气流穿过云层,水滴被撞分裂带电。轻微的水沫带负电,被风吹得较高,形成大块得带负电的雷云;大滴水珠带正电,凝聚成雨下降,或悬浮在云中,形成一些局部带正电的区域。实测表明,在5~10km的高度主要是正电荷的云层,在1~5km的高度主要是负电荷的云层,但在云层的底部也有一块不大区域的正电荷聚集。雷云中的电荷分布很不均匀,往往形成多个电荷密集中心。每个电荷中心的电荷约为0.1库仑~10库仑,而一大块雷云同极性的总电荷则可达数百库仑。这样,在带有大量不同极性或不同数量电荷的雷云之间,或雷云和大地之间就形成了强大的电场。随着雷云的发展和运动,一旦空间电场强度超过大气游离放电的临界电场强度(大气中的电场强度约为30kV/cm,有水滴存在时约为10kV/cm)时,就会发生云间或对地的火花放电;放出几十乃至几百千安的电流;产生强烈的光和热(放电通道温度高达15000℃至20000℃),使空气急剧膨胀震动,发生霹雳轰鸣。这就是闪电伴随雷鸣叫做雷电的缘故。
一块成熟的雷雨云,其顶部可以伸展到-40℃的高度(约1万米以上),而云底部的温度却在10℃以上。由于云体在垂直方向上跨过了这么宽的温度范围,因而云中水汽凝结物的相态就很不一样。在云中有水滴,过冷却水滴、雪晶、冰晶等。我们把雷雨云按温度高低来分层,便可以看:在温度高于0℃的“暖层”的云中,全部是水滴(包括云滴),在温度0至-8℃的云层中,即有较多的过冷却水滴(温度低于0℃的水滴),也有一些雪晶、冰晶;在温度低于-20℃的云层中,由于过冷却水滴自然冻结的概率大为增加,云中冰晶的天然成冰核作用更为显著,故云中基本上都是雪晶和冰晶了。在成熟阶段的雷雨云中,发生着非常复杂的微物理过程,在云的“暖层”,有水滴之间由于大小不同而发生的重力碰撞,也有湍流碰撞和电、声碰撞过程。同时,有大水滴在气流作用下发生变形,破碎而产生“连锁反应”;还有由云的“冷层”中掉到“暖层”中来的大雪花、霰等的融化等。在温度0℃至-20℃的云层中,水汽由液态往固态转移十分活跃,冰、雪晶的粘连,大冰晶破碎等也很频繁。在低于-20℃的云层中,也还有冰晶之间的粘连和大冰晶的破碎过程发生。在雷雨云中发生的所有这些微物理过程,都可以导致云中水汽凝结物电学状态的改变,对于雷雨云的起电有十分重要的贡献。
雷雨云起电的机理主要有四种理论:
水滴破裂效应:云中水滴在高速气流中作激烈运动,分裂成一些带负电的较大颗粒和带正电的较小颗粒,后者同时被上升气流携带到高空,前者落在低空,这样正负两种电荷便在云层中被分离,这也就是造成90%的云层下部带负电的原因。
吸电荷效应:由于宇宙射线或其它电离作用,大气中存在正负离子,又因为空间存在电场,在电场力的作用下正负离子在云的上下层分别积累,从而使雷雨云带电,又称感应起电。
水滴冻冰效应:水滴在结冰过程中会产生电荷,冰晶带正电荷,水带负电荷,当上升气流把冰晶上的水分带走时,就会导致电荷的分离,而使雷雨云带电。
温差起电效应:实验证明在冰块中存在着正离子(H+)和负离子(OH-),在温度发生变化时,离子发生扩散运动并相互分离。积雨云中的冰晶和雹粒在对流的碰撞和摩擦运动中会造成温度差异,并因温差起电,带电的离子又因重力和气候作用而分离扩散,最后达到一定的动态平衡。
综上所述,雷雨云起电可能是某一机理也可能是多种机理的效应而产生的。