AAC

更新时间:2024-06-05 19:09

AAC(Advanced Audio Coding),中文名:高级音频编码。出现于1997年,基于MPEG-2的音频编码技术。由Fraunhofer IIS杜比实验室、AT&T、索尼等公司共同开发,目的是取代MP3格式

定义

AAC,全称Advanced Audio Coding,是一种专为声音数据设计的文件压缩格式。与MP3不同,它采用了全新的算法进行编码,更加高效,具有更高的“性价比”。利用AAC格式,可使人感觉声音质量没有明显降低的前提下,更加小巧。

优点:相较于mp3,AAC格式的音质更佳,文件更小。

不足:AAC属于有损压缩的格式,与时下流行的APEFLAC等无损格式相比音质存在“本质上”的差距。加之,传输速度更快的USB3.0和16G以上大容量MP3正在加速普及,也使得AAC头上“小巧”的光环不复存在。

特点

①提升的压缩率:可以以更小的文件大小获得更高的音质;

②支持多声道:可提供最多48个全音域声道;

③更高的解析度:最高支持96KHz的采样频率

④提升的解码效率:解码播放所占的资源更少;

杜比实验室的结论

①128Kbps的AAC立体声音乐被专家认为不易察觉到与原来未压缩音源的区别;

②AAC格式在96Kbps码率的表现超过了128Kbps的MP3格式

③同样是128Kbps,AAC格式的音质明显好于MP3;

④AAC是唯一一个,能够在所有的EBU试听测试项目的获得“优秀”的网络广播格式。

总的来讲,AAC可以说是极为全面的编码方式,一方面,多声道和高采样率的特点使得它非常适合DVD-Audio;另一方面,低码率下的高音质则使它也适合移动通讯、网络电话、在线广播等领域,真是全能的编码方式。

背景介绍

早在1987年,Fraunhofer IIS就开始了“EUREKA project EU147, Digital Audio Broadcasting(DAB)”的研发,而这就是MP3的前身。通过和迪特尔·塞泽尔(Dieter Seitzer)教授的合作,他们开发出了著名的ISO-MPEG Audio Layer-3压缩算法。1993年这个算法被整合到MPEG-1标准中,从此MP3被投入使用。

1996年底Fraunhofer IIS在美国获得MP3的专利,并在1998年对外声明将收取MP3的专利使用费。而从1999年初开始,MP3格式广泛流行起来。特别是出现了很多免费提供MP3的音乐网站,MP3随身听也像洪水般涌进市场,种种因素促使MP3成为了极其主流的音频格式。尽管之后有VQF、WMA等挑战者,但MP3牢固的根基使它稳稳地坐在老大的位置上。

随着时间的推移,MP3越来越不能满足需要了,比如压缩率落后于Ogg、WMA、VQF等格式,音质也不够理想(尤其是低码率下),仅有两个声道……于是FraunhoferIIS与AT&T索尼、杜比、诺基亚等公司展开合作,共同开发出了被誉为“21世纪的数据压缩方式”的Advanced Audio Coding(简称AAC)音频格式,以取代MP3的位置。

其实AAC的算法在1997年就完成了,当时被称为MPEG-2 AAC,因为还是把它作为MPEG-2(MP2)标准的延伸。但是随着MPEG-4(MP4)音频标准在2000年成型,MPEG-2AAC也被作为它的编码技术核心,同时追加了一些新的编码特性,所以我们又叫MPEG-4 AAC(M4A)。

设备支持

苹果

苹果公司重量级的iPodiPod mini全都能播放16-320Kbps的AAC文件,加上苹果倾力打造的iTunes音乐播放器,为制作播放AAC文件铺好了一条捷径。

诺基亚

诺基亚则在手机领域推广AAC格式,包括主打音乐的Xpress Music系列如5320XM、万众瞩目的N-Gage、3G网络的7600、媒体手机7700、时尚娱乐的3300、新登场的6230和可作手机附件的音乐播放器HDR-1,它们都可以播放储存在MMC卡上的AAC文件。

其他产品

此外还有一些厂商的产品支持AAC,像音视频开发的Anychat、Daisy Multimedia的闪存随身听DIVA GEM,康柏支持SM卡扩展的iPAQ PA-1,东芝SD卡随身听MEA210,爱华MM-EX300闪存随身听,索尼WalkmanPSP松下的e-wear SD Audio Players还有采用DataPlay为存储介质的艾利和IDP-100等等。

Apple和Real公司还开设了网上音乐商店,将最新的唱片压缩成AAC格式提供下载。

特性

与MP3的关键不同

AAC是在MP3基础上开发出来的,所以两者的编码系统有一些相同之处。但是对比一下两者的编码流程图,会发现AAC的编码工序更为复杂。

滤波器组(Filter bank):主要完成信号的时频转换。从而得到频域的频谱系数。

②时域噪音修整(Temporal Noise Shaping,TNS):这项神奇的技术可以通过在频率域上的预测,来修整时域上的量化噪音的分布。在一些特殊的语音和剧烈变化信号的量化上,TNS技术对音质的提高贡献巨大!

③预测(Prediction):对音频信号进行预测可以减少重复冗余信号的处理,提高效率。

④量化(Quantization):AAC的量化过程是使用两个巢状循环进行反复运算。通过对量化分析的良好控制,比特率能够被更高效地利用。

⑤比特流格式(Bit-stream format):在AAC中,信息的传输都要经过熵编码,以保证冗余尽可能少。此外AAC拥有一个弹性的比特流结构,使得编码效率进一步提高。

⑥长时期预测(Long Term Prediction,LTP):这是一个MPEG-4 AAC中才有的工具,它用来减少连续两个编码音框之间的信号冗余,对于处理低码率的语音非常有效。

⑦知觉噪音代替(Perceptual Noise Substitution,PNS):这也是MPEG-4 AAC中才有的工具,当编码器发现类似噪音的信号时,并不对其进行量化,而是作个标记就忽略过去,当解码时再还原出来,这样就提高了效率。

编码

压缩算法

作为一种高压缩比的音频压缩算法,AAC通常压缩比为18:1,也有资料说为20:1,远胜mp3,而音质由于采用多声道,和使用低复杂性的描述方式,使其比几乎所有的传统编码方式在同规格的情况下更胜一筹。不过直到2006年,使用这一格式储存音频的并不多,可以播放该格式的mp3播放器更是少之又少,前所知仅有苹果iPod,而手机支持AAC的相对要多一些,此外电脑上很多音频播放软件都支持AAC格式,如苹果iTunes

运算法则

AAC所采用的运算法则与MP3的运算法则有所不同,AAC通过结合其他的功能来提高编码效率。AAC的音频算法在压缩能力上远远超过了以前的一些压缩算法(比如MP3等)。它还同时支持多达48个音轨、15个低频音轨、更多种采样率比特率、多种语言的兼容能力、更高的解码效率。号称「最大能容纳48通道的音轨,采样率达96KHz,并且在320Kbps的数据速率下能为5.1声道音乐节目提供相当于ITU-R广播的品质」。

总之,AAC可以在比MP3文件节省大约30%的储存空间与带宽的前提下提供更好的音质。但是在空间上和结构上AAC和mp3编码出来后的风格不太一样,喜欢与否属于仁者见仁智者见智的事情。

AAC+

AAC+,也称HE-AAC。

HE意思是high efficiency(高效性)。HE-AAC混合了AAC与SBR技术。SBR代表的是Spectral Band Replication(频段复制)。SBR的关键是在低码流下提供全带宽的编码而不会产生多余的信号。传统认为音频编码在低码流下意味着减少带宽和降低采样率(见MP3 FAQ #7)或产生令人不快的噪音信号。

SBR解决问题的方法是让核心编码去编码低频信号,而SBR解码器通过分析低频信号产生高频信号和一些保留在比特流中的指导信号(通常码流极低,~2kbps)。 这就是采用无SBR解码器的原因,这样你的带宽(frequency response)(频率响应)会被严重浪费。这也是被叫做Spectral Band Replication的原因,它只是增加音频的带宽,而非重建。

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}