反余割函数

更新时间:2023-08-12 18:40

反余割函数(inverse cosecant function)是数学术语,反三角函数之一,指余割函数y=csc x在区间[-π/2,0)∪(0,π/2]上的反函数,并且反余割函数在该区间上单调连续。反余割函数是一个奇函数。

函数定义

反余割函数(inverse cosecant function),反三角函数之一。指余割函数 y=csc x 在区间[-π/2,0)∪(0,π/2]上的反函数。记为 y=arccsc x 或 y=csc-1x。它表示[-π/2,0)∪(0,π/2]上余割值等于 x 的那个唯一确定的角,即csc(arccsc x)=x,反余割函数的定义域是(-∞,-1]∪[1,+∞),值域是[-π/2,0)∪(0,π/2]。

由于余割函数在区间[-π/2,0)∪(0,π/2]上是单调连续的,因此,反余割函数是存在且唯一确定的。引进多值函数概念后,就可以在余割函数的整个定义域(x∈R,且x≠kπ,k∈Z)上来考虑它的反函数,这时的反余割函数是多值的,记为 y=Arccsc x,定义域是(-∞,-1]∪[1,+∞),值域是y∈R,且y≠kπ,k∈Z。

于是,把 y=arccsc x (x∈(-∞,-1]∪[1,+∞),y∈[-π/2,0)∪(0,π/2])称为反余割函数的主值,而把 y=Arccsc x=kπ+(-1)karccsc x (x∈(-∞,-1]∪[1,+∞),y∈R,y≠kπ,k∈Z) 称为反余割函数的通值。反余割函数在区间(-∞,-1]∪[1,+∞)的图像可由区间[-π/2,0)∪(0,π/2]上的余割曲线作关于直线y=x的对称变换而得到。

函数性质

1、定义域:{x|x≤-1或 x≥1}

2、值域:{y|-π/2≤y<0 或 0

3、奇偶性:奇函数。(图像渐近线为:y=0 )

4、单调性:单调递减区间:(-∞,-1]、[1,+∞) 【注意:绝对不能并起来】

5、最值:当x=-1时,有最小值-π/2;当x=1时,有最大值π/2

有关计算公式

基本原则

反三角函数主值区间选取的四项基本原则

(1)反三角函数的定义域必须最大;

(2)反三角函数值的绝对值必须最小(绝对值相等时,取正不取负)即图形紧靠 x轴(与 x 轴等距离时,取上方不取下方);

(3)必须包含全部正锐角(便于查表);

(4)反三角函数的图形必须严格单调,并且能连结的不间断。

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}