更新时间:2024-11-05 20:06
矢量图像,又称为向量,也称为面向对象的图像或绘图图像,在数学上定义为一系列由线连接的点。
既有大小又有方向的量。一般来说,在物理学中称作矢量,在数学中称作向量。在计算机中,矢量图可以无限放大永不变形。
矢量:(shǐ liàng)(向量)
三维几何学解释
就是根据物体的几何性质而确定的一种定位方法.主要通过线性相关和线性变换解释几何问题。
代数学解释
在有限维向量空间中,也与线性相关与线性变换密切相关,但无需限制于三维组.同时假定有理运算能够施行(这个极大地影响了计算机科学发展),讨论域为任意域,并且要将基本数系的可交换性除去.
无限维向量空间(任意维),涉及Zorn引理、基数理论、拓扑等较深的数学概念,在这里建议网友对抽象代数学有一定基础时自己理解。
矢量(英语:Vector)是数学、物理学和工程科学等多个自然科学中的基本概念,指一个同时具有大小和方向的几何对象,因常常以箭头符号标示以区别于其它量而得名。直观上,矢量通常被标示为一个带箭头的线段。线段的长度可以表示矢量的大小,而矢量的方向也就是箭头所指的方向。物理学中的位移、速度、力、动量、磁矩、电流密度等,都是矢量。与矢量概念相对的是只有大小而没有方向的标量。
在数学中,矢量也常称为向量,即有方向的量。并采用更为抽象的矢量空间(也称为线性空间)来定义,而定义具有物理意义上的大小和方向的向量概念则需要引进了范数和内积的欧几里得空间。
矢量(vector quantity)和标量(scalar quantity)的定义 简单的理解:“矢量和标量的定义如下:(到大学物理中会详细研究)
(1)定义或解释:有些物理量,既要有数值大小(包括有关的单位),又要有方向才能完全确定。这些量之间的运算并不遵循一般的代数法则,而遵循特殊的运算法则。比如说位移这样的物理量,这样的量叫做物理矢量。有些物理量,只具有数值大小(包括有关的单位),而不具有方向性。这些量之间的运算遵循一般的代数法则。例如温度、质量这些物理量,这样的量叫做物理标量。
(2)说明:①矢量之间的运算要遵循特殊的法则。矢量加法一般可用平行四边形法则。由平行四边形法则可推广至三角形法则、多边形法则或正交分解法等。矢量减法是矢量加法的逆运算,一个矢量减去另一个矢量,等于加上那个矢量的负矢量。A-B=A+(-B)。矢量的乘法。矢量和标量的乘积仍为矢量。矢量和矢量的乘积,可以构成新的标量,矢量间这样的乘积叫标积;也可构成新的矢量,矢量间这样的乘积叫矢积。例如,物理学中,功、功率等的计算是采用两个矢量的标积。W=F·S,P=F·v,物理学中,力矩、洛伦兹力等的计算是采用两个矢量的矢积。M=r×F,F=qv×B。②物理定律的矢量表达跟坐标的选择无关,矢量符号为表述物理定律提供了简单明了的形式,且使这些定律的推导简单化,因此矢量是学习物理学的有用工具。”
(3)矢量有两种,一种为只有大小与方向的物理量,譬如速度,我们称之为“奇矢量”;另外一种不但有大小与方向的物理量,而且还在矢量间作用产生效果所需时间的一个量,譬如力,我们称之为“偶矢量”或“极限矢量(即时、有上限)”,因为它们在矢量间作用产生效果所需的时间是即时与光速的。
矢量的大小比较
一般来说,矢量只有在同方向上才可比较大小,不同方向上的矢量一般不能比较大小。
个人的理解:矢量规律的总结,基于人们对空间广义的对称性的理解。矢量所根据的对平移与转动的对称性(不变性)。对迄今发现的所有规律均有效。使用矢量分析方法,叫数学分析,相当于知道结论推过程,十分方便。这种方法具有极大的创造性,对物理研究或许有所启发。
物理学矢量标量
物理学上常见的矢量、标量举例
②标量:质量,密度,温度,功,功率,路程,速率,体积,时间,热量,电阻等
矢量图像
矢量图像,也称为面向对象的图像或绘图图像,在数学上定义为一系列由线连接的点。矢量文件中的图形元素称为对象。每个对象都是一个自成一体的实体,它具有颜色、形状、轮廓、大小和屏幕位置等属性。既然每个对象都是一个自成一体的实体,就可以在维持它原有清晰度和弯曲度的同时,多次移动和改变它的属性,而不会影响图例中的其它对象。这些特征使基于矢量的程序特别适用于图例和三维建模,因为它们通常要求能创建和操作单个对象。基于矢量的绘图同分辨率无关。这意味着它们可以按最高分辨率显示到输出设备上。
矢量文件中的图形元素称为对象。每个对象都是一个自成一体的实体,它具有颜色、形状、轮廓、大小和屏幕位置等属性。既然每个对象都是一个自成一体的实体,就可以在维持它原有清晰度和弯曲度的同时,多次移动和改变它的属性,而不会影响图例中的其它对象。这些特征使基于矢量的程序特别适用于图例和三维建模,因为它们通常要求能创建和操作单个对象。基于矢量的绘图同分辨率无关。这意味着它们可以按最高分辨率显示到输出设备上。
与上述基于矢量的绘图程序相比,像这样的编辑照片程序则用于处理位图图像。当您处理位图图像时,可以优化微小细节,进行显著改动,以及增强效果。位图图像,亦称为点阵图像或绘制图像,是由称作像素(图片元素)的单个点组成的。这些点可以进行不同的排列和染色以构成图样。当放大位图时,可以看见赖以构成整个图像的无数单个方块。扩大位图尺寸的效果是增多单个像素,从而使线条和形状显得参差不齐。然而,如果从稍远的位置观看它,位图图像的颜色和形状又显得是连续的。由于每一个像素都是单独染色的,您可以通过以每次一个像素的频率操作选择区域而产生近似相片的逼真效果,诸如加深阴影和加重颜色。缩小位图尺寸也会使原图变形,因为此举是通过减少像素来使整个图像变小的。同样,由于位图图像是以排列的像素集合体形式创建的,所以不能单独操作(如移动)局部位图。为什么处理位图时要着重考虑分辨率?
处理位图时,输出图像的质量决定于处理过程开始时设置的分辨率高低。分辨率是一个笼统的术语,它指一个图像文件中包含的细节和信息的大小,以及输入、输出、或显示设备能够产生的细节程度。操作位图时,分辨率既会影响最后输出的质量也会影响文件的大小(图像的清晰度)。处理位图需要三思而后行,因为给图像选择的分辨率通常在整个过程中都伴随着文件。无论是在一个300 dpi的打印机还是在一个2570dpi的照排设备上印刷位图文件,文件总是以创建图像时所设的分辨率大小印刷,除非打印机的分辨率低于图像的分辨率。如果希望最终输出看起来和屏幕上显示的一样,那么在开始工作前,就需要了解图像的分辨率和不同设备分辨率之间的关系。显然矢量图就不必考虑这么多。
软件中的对象可以是任何基本的绘图元素或者是一行文字,例如线条、椭圆、多边形、矩形、标注线或一行美术字等。创建完一个简单对象后,就可以定义出它的特征,如填充颜色、轮廓颜色、曲线平滑度等,并对其应用特殊效果。在这些信息中,包括对象在屏幕中的位置、创建它的顺序、以及定义的属性值,都将作为对象描述的一部分。这意味着当操作对象(如移动对象)时,CorelDRAW 会重建其形状和全部属性。
对象可以有一条封闭路径或者一条开放路径。一个群组对象是由一个或多个对象构成的。当用挑选工具选择一个对象时,可以通过它四周的选择框来识别它。当选中一个对象时,选择框的边角和中点会出现 8个填充方块。每个单独的对象都有自己的选择框。当用”组群“命令把两个或更多的对象进行组合时,将会产生一个组群,可以把它当作一个对象来选择和操作。对象由路径构成,这些路径构成了它的轮廓和边界。一个路径可由单个或几个线段构成。每个线段的端点有一个中空的方块,称为节点。可以用形状工具选择一个对象的节点,从而改变它的总体形状和弯曲角度。开放路径对象和封闭路径对象的区别:开放路径对象的两个端点是不相交的。封闭路径对象就是那种两个端点相连构成连续路径的对象。开放路径对象既可能是直线,也可能是曲线,例如用手绘工具创建的线条、用贝塞尔曲线工具创建的线条或用螺纹工具创建的螺纹线等。但是,在用“手绘工具”或“贝塞尔曲线工具”时,把起点和终点连在一起也可以创建封闭路径。封闭路径对象包括圆、正方形、网格、自然笔线、多边形和星形等。封闭路径对象是可以填充的,而开放路径对象则不能填充。
常用的绘制矢量图的软件:Coreldraw、illustrator、AutoCAD等。
矢量图在设计中应用的比较广泛,比如FLASH的制作,广告设计喷绘等。平常使用的.JPG/.JPEG还有.GIF/.BMP属于位图。矢量图的每一点都有自己的属性,因此放大后不会失真;位图由于受到像素的限制,因此放大后会失真模糊,甚至完全看不清楚了。
矢量还被应用于工程学和动力学,在航空工业方面应用于发动机的动力。
物理计算、数学计算或者其他的作图计算