更新时间:2024-04-23 16:17
简谐运动是一种变速与变加速运动。其速度与加速度可以由简谐运动方程(位移-时间方程)通过微分得到。于是,在假设通解 情况下,可得
速度:
加速度:
简谐运动的振动动能和振动势能分别为
简谐运动的总机械能
该式子表明,简谐运动的总能量与振幅的平方成正比,而简谐运动是等幅振动,因此简谐运动的总机械能必然守恒。
设两个同方向同频率的简谐运动方程分别为
则两个简谐运动的合成之后的运动仍为简谐运动,其方程为
其中,合振幅 为 与 的矢量和,如上图所示。合振幅与合振动的初相的表达式如下所示:
设两个同方向不同频率的简谐运动方程分别为
合振动的方程为
三角恒等变换后得到
由式子可知,同方向不同频率的简谐运动合成之后便不再是简谐运动,它的振幅时而增大时而减小,合成波动图如下所示。
简谐振动是最简单最基本的振动,任何复杂的振动都可视为若干个简谐运动的合成。而振动和波动的基本规律又是声学、地震学、电工学、电子学、光学等的基础。
在电工学中有一种正弦交流电路是,是线性电路中当激励(电压源或电流源)按某一正弦规律变化,响应(电压或电流)也为同频率的正弦量时,电路的这种工作状态称为正弦稳态。此时的电路称为正弦稳态电路,或正弦交流电路。它的电流可表示为,其中Im为正弦量的振幅,(ωt+φi)称为相位或相角,ω称为正弦量的角频率,它是正弦量的相位随时间变化的角速度。
建筑结构的受力分为静力荷载和动力荷载,其中动力荷载中若荷载随时间变化较大时则需要进行动力荷载验算,如地震荷载。在动力荷载计算时,要以最简单的单自由度体系的自由振动为基础,如下图悬臂立柱结构可简化为一个弹簧振子模型。该自由振动的微分方程的解就是一个简谐运动: ,其中A表示质点振动的最大位移,α为初相位。ω为自振频率,仅与结构体系自身的质量和刚度有关,它是表明结构动力性能的重要指标。