四元玉鉴

更新时间:2024-04-02 17:08

《四元玉鉴》是中国元代数学重要著作之一,元代数学家朱世杰所著。《四元玉鉴》分卷首、上卷、中卷、下卷,24门,收录288问,包括天元术232问,二元术36问,三元术13问,四元术7问。卷首四问是例题,有草(解题步骤),其他284问只有术而没有草。1837年,清代数学家罗士琳补草,刊行《四元玉鉴细草》三卷。所有问题都与方程式方程组有关。介绍了朱世杰在多元高次方程组的解法─”四元术”、高阶等差级数的计算─”垛积术”以及”招差术”(有限差分)等方面的研究成果。

简介

它是一部成就辉煌的数学名著,受到近代数学史研究者的高度评价,认为是中国数学著作中最重要的一部,同时也是中世纪最杰出的数学著作之一。但其美中不足的是,在四元玉鉴中,对於一些重要的问题如求解高次联立方程组的消去法等解说过於简略,并且对於书中每一个问题的解法也没有列出详细的演算过程,故比较深奥,人们很难读懂。以致於自朱世杰之後,中国这种在数学上高度发展的局面不但没有保持发展下去,反而很多成就在明、清的一段时期内几乎失传。

此外朱世杰将高阶等差级数求和和高次内插法进行了发展。《四元玉鉴》是元代杰出数学家朱世杰的代表作,其中的成果被视为中国筹算系统发展的顶峰。

贡献

《四元玉鉴》是朱世杰阐述多年研究成果的一部力著。全书共分3卷,24门,288问,书中所有问题都与求解方程或求解方程组有关,其中四元的问题(需设立四个未知数者)有7问,三元者13问,二元者36问,一元者232问。卷首列出了贾宪三角等四种五幅图,给出了天元术、二元术、三元术、四元术的解法范例;后三者分别是二元、三元、四元高次方程组的列法及解法。创造四元消法,解决多元高次方程组问题是该书的最大贡献,书中另一个重大成就是系统解决高阶等差级数求和问题和高次招差法问题。

在朱世杰之前,古代中国数学已有了解方程的方法———“天元术”,“天元术”解方程是设“天元为某某”,某某就是(x)。朱世杰不仅继承沿用了天元术,方程组解法由二元、三元推广至四元。未知数不止一个时,除设未知数天元(x)外,还设地元(y)、人元(z)及物元(u),再列出二元、三元甚至四元的高次联立方程组,然后求解。在欧洲,解联立一次方程始于16世纪,关于多元高次联立方程的研究则是18、19世纪的事了,朱世杰的“天元术”比欧洲早了400多年。

朱世杰对“垛积术”的研究,实际上得到了高阶等差级数求和问题的普遍的解法。自宋代起我国就有了关于高阶等差级数求和问题的研究,沈括(1031-1095年)和杨辉(1261-1275年)的著作中,都有垛积问题,这些垛积问题有一些就涉及高阶等差级数,朱世杰在《四元玉鉴》中又把这一问题的研究进一步深化,得到了一串三角垛的公式。

《四元玉鉴》是一部成就辉煌的数学名著,是宋元数学集大成者,也是我国古代水平最高的一部数学著作。现代数学史研究者对《四元玉鉴》给予了高度评价。著名科学史专家乔治·萨顿说,《四元玉鉴》“是中国数学著作中最重要的一部,同时也是中世纪最杰出的数学著作之一”。编著《中国科学技术史》的李约瑟这样评价朱世杰和《四元玉鉴》:“他以前的数学家都未能达到这部精深的著作中所包含的奥妙的道理”。

朱世杰之后,元代再无高深的数学著作出现,汉唐宋元的数学著作很少有新的刻本,很多甚至失传了。乾隆三十七年(1772年)开《四库全书》馆时,挖掘了不少古代数学典籍,朱世杰的著作却未被发现,因此,起初没有编入;1799年阮元李锐等人编纂数学家传记《畴人传》时,也未介绍《四元玉鉴》。之后不久,阮元在浙江访得此书,旋即将其编入《四库全书》,并把抄本交给李锐校算(未校完),后由何元锡按此抄本刻印,这是《四元玉鉴》1303年初版以来的第一个重刻本。1839年扬州学者罗士琳经多年研究之后,出版了他所编著的《四元玉鉴细草》,罗氏对《四元玉鉴》书中每一问题都作了细草。就在罗士琳翻刻《四元玉鉴》时,《算学启蒙》也还无着落。后来罗士琳“闻朝鲜以是书为算科取士”,于是请人在北京找到了顺治十七年(1660年)朝鲜全州府尹金始振所刻的翻刻本,这样,《算学启蒙》又在扬州重新刊印出版,这就是该书现存各种版本的母本。

元代朱世杰这两部杰出的数学著作都是在扬州完成、刻印的,失传了几百年后,它们又被扬州学者发现、校算、注释,并在扬州重新刻印出版,仅此可见,扬州在我国数学发展史上有着十分重要的地位。

作者简介

朱世杰(1249年-1314年),字汉卿,号松庭,汉族,燕山(今北京)人氏,元代数学家、教育家,毕生从事数学教育。朱世杰在当时天元术的基础上发展出“四元术”,也就是列出四元高次多项式方程,以及消元求解的方法。此外他还创造出“垛积法”,即高阶等差数列的求和方法,与“招差术”,即高次内插法。主要著作是《算学启蒙》与《四元玉鉴》。

朱世杰“以数学名家周游湖海二十余年”,“踵门而学者云集”(莫若、祖颐:《四元玉鉴》后序)。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。

算学启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创造有“四元术”(多元高次方程列式与消元解法)、“垛积术”(高阶等差数列求和)与“招差术”(高次内插法)。

宋元时期,中国数学鼎盛时期中杰出的数学家有“秦﹝九韶﹞、李﹝冶﹞、杨﹝辉﹞、朱﹝世杰﹞四大家”,朱世杰就是其中之一。朱世杰是一位平民数学家和数学教育家。朱世杰平生勤力研习《九章算术》,旁通其它各种算法,成为元代著名数学家。

相关资料

在元灭南宋以前,南北之间的交往,特别是学术上的交往几乎是断绝的。南方的数学家对北方的天元术毫无所知,而北方的数学家也很少受到南方的影响。朱世杰曾“周游四方”,莫若(古代数学家)序中有“燕山松庭朱先生以数学名家周游湖海二十余年矣。四方之来学者日众,先生遂发明《九章》之妙,以淑后图学,为书三卷……名曰《四元玉鉴》”,祖颐后序中亦有“汉卿名世杰,松庭其自号也。周流四方,复游广陵,踵门而学者云集”。经过长期的游学、讲学等活动,终于在1299年和1303年,在扬州,刊刻了他的两部数学杰作——《算学启蒙》和《四元玉鉴》。杨辉书中的归除歌诀在朱世杰所著《算学启蒙》中有了进一步的发展。

罗士琳认为:“汉卿在宋元间,与秦道古(即秦九韶)、李仁卿可称鼎足而三。道古正负开方,汉卿天元如积皆足上下千古,汉卿又兼包众有,充类尽量,神而明之,尤超越乎秦、李之上”。清代数学家王鉴也说:“朱松庭先生兼秦、李之所长,成一家之著作”。朱世杰全面继承了并创造性地发扬了天元术、正负开方法等秦、李书中所载的数学成就之外,还囊括了杨辉书中的日用、商用、归除歌诀之类与当时社会生活密切相关的各种算法,并作了新的发展。

由此看来,在朱世杰的工作中,不仅有高次方程的解法,天元术等为代表的北方数学的成就,也包括了杨辉工作中所体现出来的日用,商用算法以及各种歌诀等南方数学的成就,不仅继承了古代中国数学的光辉遗产,而且又作了创作性的发展。朱世杰的工作,在一定意义上讲,可以看作是宋元数学的代表,可以看作是古代筹算系统发展的顶峰。就连西方资产阶级学者们也不能否认这一点,乔治·萨顿说:朱世杰“是中国的,他所生存的时代的,同时也是贯穿古今的一位最杰出的数学家”,说《四元玉鉴》“是中国数学著作中最重要的一部,同时也是中世纪最杰出的数学著作之一”。朱世杰以他自己的杰出著作,把中国古代数学推向更高的境界,为中国古代数学的光辉史册,增加了新的篇章,形成了宋代中国数学发展的最高峰。

卷首

卷首是全书的预备知识。

梯法七乘方图

这是贾宪三角形的推广

四元自乘演段图

朱世杰给出的几何图(演段图)(如图3)

下图为四元自乘演段图的现代形式:(如图4)

立四元(如图5)

中见为“太”,上为x,下为z,左为y,右为w:

四元自乘(如图6)

假令四草

包括一气混元、两仪化元、三才运元、四象会元,代表一、二、三、四次方程。

一气混元(如图7)

本节阐明天元术。

今有黄方乘直积得二十四步,只云股弦和九步,问勾几何?

答曰:三步。

草曰:立天元一为勾

根据条件 黄方乘直积得二十四步

:黄方:

:直积:

:得

:此外:股弦和九步

(立天元一为勾)

由此得方程

解之,得勾=3

两仪化元(如图10)

本节阐明二元术。

今有股幂减弦较较与股乘勾等。只云勾幂加弦较和与勾乘弦同。问股几何?

答曰:四步 草曰:立天元一为股,地元一为勾弦和。天地配合求解得方程:

又根据所给条件得:

由此得:

相消得

解之,得

三才运元(如图16 )

本节阐明三元术

朱世杰在《三才运元》一节,比较详细的阐述逐次消元法,受到国内外学者的重视

今有股弦较除弦和与直积等。只云勾股较除弦较和与勾同。问弦几何?

得到

令式

云式:

三元式

三元式与云式相消,

人天易位 人弦-->天勾

得:

前式

后式

相消得

解之得 x=5,即 天勾=5;

人天易位 天勾-->人弦

得弦=五步。

四象会元(如图17 )

本节阐明四元术。

今有股乘五较与弦幂加勾乘弦等。只云勾除五和与股幂减勾弦同。问黄方带勾股弦共几何?''

:答曰:一十四{{0}} 步。

:草曰:立天元{{0}} 一为勾,地元一为股,人元一为弦,物元一为开数

得四元方程

: 1:

: 2:

: 3: ;

: 4:

消元,物易天位(如图18)

解之,

物易天位,得 十四步。

卷上

混积问元

直段求源

一十八问。第十八问:

今有积以和乘之,减积,余以平乘之加和,得一十七万一百六十二步。只云和为益实。四为益方,三为从上廉,二为益下廉,一为正隅,三平方开之,如平四分之一。问,长,平各几何?

答曰:平一十二步,长三十步。

立天元一为开方数,得十次方程:

解之得 x=3, 乘四得12, 即平数。

混积问元

十八问

端匹互隐

九问

廪粟回求

六问

商功修筑

七问

和分索隐

一十三问。

卷中

如意混和

二问

方圆交错

九问

三率究圆

一十四问

|今有平圆积四十九步三百一十四分步之二百三十九。问:为徽率周几何?

答曰:二十五步。

立天元一为徽率圆周

圆面积

圆周

圆周率

取徽率

得下列方程:

明积演段

二十问

勾股测望

八问

;第一问:

今有直邑,不知大小,各开中门。只云南门外二百四十步有塔,人出西门行一百八十步见塔,复抹邑西南隅行一里二百四十步恰至塔所;问邑长阔各几何?

''答曰:长一里一百二十步,阔一里。

立天元一为邑长之半,得四次方程

万有文库第二集 朱世杰撰 罗士琳草 (中) 卷下之五 四一0-四一一-

解之得 x=240步,邑长=2x= 480b步=1里120步。

同理, 令天元一为邑阔之半

得方程:

解之得 x=180步,邑长=360步=一里。

;第七问:

今有营居山顶,岩底有泉,欲汲而不知其深。偃矩山上,令句高四尺,从矩高端望泉入下股六尺。又设重矩于上,其矩间相去一丈六尺,更从矩端望泉入上股五尺六寸。问岩深几何?

:答曰:岩深二十二丈。

:此问与刘徽《海岛算经》望深谷。

;第八问:

今有登山临邑,不知门高。偃矩山上,令勾高三尺,斜望门额入下股四尺八寸,复望门困,入下股二尺八寸八分。复又立重矩于上,其间相去五尺。更从勾端斜望门额入股三尺六寸,又望门困入上股二尺四寸。问城门高几何?

:答曰:门高一丈。

:此问与刘徽《海岛算经》|望清渊同。

或问歌彖

一十二问

茭草形段

七问

箭积交参

七问

拔换截田

一十九问

五问

卷中《如像招数》第五问给出世界上最早的四次内插公式

今有官司依立方招兵,初招方面三尺,次招方面转多一尺,得数为兵,今招一十五方,每人日支钱二百五十文,问兵及支钱各几何。或问还原:依立方招兵,初招方面三尺,次招方面转多一尺,得数为兵。今招一十五日,每人日支钱二百五十文,问招兵及支钱几何?

答曰:兵二万三千四百人,钱二万三千四百六十二贯。

术曰求得上差二十七,二差三十七,三差二十四,下差六

求兵者,今招为上积,又今招减一为茭草底子积为二积,又今招减二为三角底子积,又今招减三为三角一积为下积。以各差乘各积,四位并之,即招兵数也。

先求出上差(一次差),二差(二次差),三差(三次差)和下差(四次差),然后求出答案,是四次插值招差术的运用

招兵总数=

其中

* a=上差

* b=二差

* c=三差

* d=下差

卷下

果垛叠藏

二十问 此章论述三角垛、三角撒星垛、四角垛、圆锥垛、刍童垛、刍甍垛。

第一问:今有三角垛果子一所,值钱一贯三百二十文,只云从上一个值钱二文,次下层层每个累贵一文,问底子每面几何?

:答曰:九个。

术曰:立天元一为每个底子,如积求之,得三万一千六百八十为益实十为从方,二十一为从上廉,一十四为下廉,三为从隅,三桀方开之,得每个底子,合问。

三角垛级数:

三角垛自上而下,每边的果子数是:

1,2,3,4,5,6....n.

自上而下,每个果子值钱:

2,3,4,5,6.....(n+1)

三角果子垛价值V由下列级数表示

这是一个已知级数和,倒求 n 的数学问题。

朱世杰用天元术,令天元一 为每底边的果子数(x=n)

朱世杰用的求和公式:

今得

解之,得

锁套吞容

一十九问

方程正负

八问

杂范类会

一十三问

两仪合辙

一十二问。。

左右逢元

二十一问。用天地二元。

三才变通

一十一问。用天,地,人三元。

四象朝元

六问,用天,地,人,物四元。

第二问:今有弦较和如股幂八分之三。只云弦较较如勾弦和幂四分之一。

二弦四勾二股三事连环得几何?

答曰:三十步。

立天元一为勾,地元一为股,人元一为弦,物元一为开数。

得:

版本

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}