贝塔分布

更新时间:2023-12-25 21:32

贝塔分布(Beta Distribution) 是一个作为伯努利分布和二项式分布的共轭先验分布密度函数,在机器学习和数理统计学中有重要应用。在概率论中,贝塔分布,也称Β分布,是指一组定义在(0,1) 区间的连续概率分布

定义

概率论中,贝塔分布,也称B分布,是指一组定义在 区间的连续概率分布,有两个参数 。

1.概率密度函数

Β分布的概率密度函数是:

其中 是Γ函数。随机变量X服从参数为 的Β分布通常写作

2.累积分布函数

Β分布的累积分布函数是:

其中 是不完全Β函数, 是正则不完全贝塔函数

性质

1. 参数为 贝塔分布的众数是:

2.期望值方差分别是:

3.偏度是:

4.峰度是:

或:

5. 阶矩是:

其中 表示下降阶乘幂。 阶矩还可以递归地表示为:

6.

7. 给定两个Β分布随机变量,X~ Beta(α, β),Y~ Beta(α', β'),X的微分熵为:

其中 表示双伽玛函数。

8. 联合熵为:

9.KL散度其为:

实例

空气中含有的气体状态的水分。表示这种水分的一种办法就是相对湿度。即含水量与空气的最大含水量(饱和含水量)的比值。我们听到的天气预告用语中就经常使用相对湿度这个名词。

相对湿度的值显然仅能出现于0到1之间(经常用百分比表示)。而空气为什么出现某个相对湿度显然具有随机性(可以利用最复杂原理),这些提示我们空气的相对湿度可能符合贝塔分布。

马淑红等人完成的《塔里木气候极值及其在油田工程设计中的应用》研究中(同名的书由气象出版社于1995年出版见138-142页),刘绍民等人分析了冬季塔里木盆地的日最大相对湿度和夏季日最小相对湿度。证实它们都符合贝塔分布。

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}